Skip to main content Accessibility help

Permeable reactive interceptors: blocking diffuse nutrient and greenhouse gases losses in key areas of the farming landscape

  • O. FENTON (a1), M. G. HEALY (a2), F. BRENNAN (a3), M. M. R. JAHANGIR (a1), G. J. LANIGAN (a1), K. G. RICHARDS (a1), S. F. THORNTON (a4) and T. G. IBRAHIM (a1)...


Engineered remediation technologies such as denitrifying bioreactors target single contaminants along a nutrient transfer continuum. However, mixed contaminant discharges to a water body are more common from agricultural systems. Indeed, evidence presented herein indicates that pollution swapping within denitrifying bioreactor systems adds to such deleterious discharges. The present paper proposes a more holistic approach to contaminant remediation on farms, moving from the use of ‘denitrifying bioreactors’ to the concept of a ‘permeable reactive interceptor’ (PRI). Besides management changes, a PRI should contain additional remediation cells for specific contaminants in the form of solutes, particles or gases. Balance equations and case studies representing different geographic areas are presented and used to create weighting factors. Results showed that national legislation with respect to water and gaseous emissions will inform the eventual PRI design. As it will be expensive to monitor a system continuously in a holistic manner, it is suggested that developments in the field of molecular microbial ecology are essential to provide further insight in terms of element dynamics and the environmental controls on biotransformation and retention processes within PRIs. In turn, microbial and molecular fingerprinting could be used as an in-situ cost-effective tool to assess nutrient and gas balances during the operational phases of a PRI.


Corresponding author

* To whom all correspondence should be addressed:


Hide All
Balana, B. B., Vinten, A. & Slee, B. (2011). A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD: key issues, methods, and applications. Ecological Economics 70, 10211031.
Braker, G., Schwarz, J. & Conrad, R. (2010). Influence of temperature on the composition and activity of denitrifying soil communities. FEMS Microbiology Ecology 73, 134148.
Buda, A. R., Koopmans, G. F., Bryant, R. B. & Chardon, W. J. (2012). Emerging technologies for removing nonpoint phosphorus from surface water and groundwater: introduction. Journal of Environmental Quality 41, 621627.
Cameron, S. G. & Schipper, L. A. (2011). Evaluation of passive solar heating and alternative flow regimes on nitrate removal in denitrification beds. Ecological Engineering 37, 11951204.
Christianson, L. E., Hanly, J. A. & Hedley, M. J. (2011 a). Optimized denitrification bioreactor treatment through simulated drainage containment. Agriculture Water Management 99, 8592.
Christianson, L., Bhandari, A. & Helmers, M. J. (2011 b). Pilot-scale evaluation of denitrification drainage bioreactors: reactor geometry and performance. Journal of Environmental Engineering 137, 213220.
Cooke, R. A., Doheny, A. M. & Hirschi, M. C. (2001). Bio-reactors for edge-of-field treatment of tile outflow. In 2001 ASAE Annual Meeting. ASAE Paper number 012018, St. Joseph, MI, USA: ASAE. Available online from: (accessed November 2013).
Council of the European Communities (CEC) (1991). Council Directive 91/676/EEC of 12 December 1991 concerning the 582 protection of waters against pollution caused by nitrates from agricultural sources. Official Journal of the European Communities L375, 00010008.
Council of the European Communities (CEC) (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Official Journal of the European Communities L237, 172.
Council of the European Communities (CEC) (2001). Directive 2001/81/EC of the European Parliament and of the Council of 23 October 2001 on national emission ceilings for certain atmospheric pollutants. Official Journal of the European Union L309, 114.
Council of the European Communities (CEC) (2009). Decision No 406/2009/EC of the European Parliament and of the Council of 23 April 2009 on the effort of Member States to reduce their Greenhouse Gas Emissions to meet the Community's Greenhouse Gas Emission Reduction Commitments up to 2020. Official Journal of the European Union L140, 136148.
Davidson, E. A. & Mosier, A. R. (2004). Controlling losses to air. In Controlling Nitrogen Flows and Losses (Eds Hatch, D. J., Chadwick, D. R., Jarvis, S. C. & Roker, J. A.), pp. 251259. Wageningen, The Netherlands: Wageningen Academic Publishers.
Drew, D. (2011). Karstic groundwater systems. In Groundwater in the Hydrological Cycle – Pressure and Protection. Proceedings of the 30th Annual Groundwater Conference, Tullamore, Co. Offaly, Ireland, 20 & 21 April 2010 (Eds International Association of Hydrogeologists (Irish Group)), pp. 1322. Tullamore, Ireland: International Association of Hydrogeologists (Irish Group). Available online from: (accessed November 2013).
Elliot, T. (2009). NITRABAR: Remediation of Agricultural Diffuse NITRAte Polluted Waters through the Implementation of a Permeable Reactive BARrier. D16 and D17 – Period One and Two Monitoring Reports. Unknown publisher.
Feng, L.-J., Xu, J., Xu, X.-Y., Zhu, L., Xu, J., Ding, W. & Luan, J. (2012). Enhanced biological nitrogen removal via dissolved oxygen partitioning and step feeding in a simulated river bioreactor for contaminated source water remediation. International Biodeterioration and Biodegradation 71, 7279.
Fenton, O., Healy, M. G. & Rodgers, M. (2009 a). Use of ochre from an abandoned metal mine in the South East of Ireland for phosphorus sequestration from dairy dirty water. Journal of Environmental Quality 38, 11201125.
Fenton, O., Richards, K. G., Kirwan, L., Khalil, M. I. & Healy, M. G. (2009 b). Factors affecting nitrate distribution in shallow groundwater under a beef farm in South Eastern Ireland. Journal of Environmental Management 90, 31353146.
Firestone, M. K. & Davidson, E. A. (1989). Microbiological basis of NO and N2O production and consumption in soil. In Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere (Eds Andreae, M. O. & Schimel, D. S.), pp. 721. New York: John Wiley and Sons.
Gentile, M., Yan, T., Tiquia, S. M., Fields, M. W., Nyman, J., Zhou, J. & Criddle, C. S. (2006). Stability in a denitrifying fluidized bed reactor. Microbial Ecology 52, 311321.
Gentile, M., Jessup, C. M., Nyman, J. L. & Criddle, C. S. (2007). Correlation of functional instability and community dynamics in denitrifying dispersed-growth reactors. Applied and Environmental Microbiology 73, 680690.
Groffman, P. M., Altabet, M. A., Böhlke, J. K., Butterbach-Bahl, K., David, M. B., Firestone, M. K., Giblin, A. E., Kana, T. M., Nielsen, L. P. & Voytek, M. A. (2006). Methods for measuring denitrification: diverse approaches to a difficult problem. Ecological Applications 16, 20912122.
Healy, M. G., Ibrahim, T. G., Lanigan, G. J., Serrenho, A. J. & Fenton, O. (2012). Nitrate removal rate, efficiency and pollution swapping potential of different organic carbon media in laboratory denitrification bioreactors. Ecological Engineering 40, 198209.
Hill, R., Smith, K., Russell, K., Misselbrook, T. & Brookman, S. (2008). Emissions of ammonia from weeping wall stores and earth-banked lagoons determined using passive sampling and atmospheric dispersion modelling. Journal of Atmospheric Chemistry 59, 8398.
Huber-Humer, M., Gebert, J. & Hilger, H. (2008). Biotic systems to mitigate landfill methane emissions. Waste Management and Research 26, 3346.
Ibrahim, T. G., Fenton, O., Richards, K. G., Fely, R. M. & Healy, M. G. (2013). Spatial and temporal variations of nutrient loads in overland flow and subsurface drainage from a marginal land site in south-east Ireland. Biology and Environment: Proceedings of the Royal Irish Academy 113, 118. DOI:10.3318/BIOE.2013.13.
IPCC (2006). IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme (Eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.). Japan: IGES.
Jahangir, M. M. R., Johnston, P., Khalil, M. I., Hennessey, D., Humphreys, J., Fenton, O. & Richards, K. G. (2012). Groundwater: a pathway for terrestrial C and N losses and indirect gas emissions. Agriculture, Ecosystems and Environment 159, 4048.
Kult, K. & Jones, C. S. (2011). Woodchip bioreactors for N-source reduction in a highly managed agricultural landscape. In American Geophysical Union, Fall Meeting, San Francisco 5–9 September, abstract #B11C-0503. Available online from: (accessed November 2013).
Li, D., Lanigan, G. & Humphreys, J. (2011). Measured and simulated nitrous oxide emissions from ryegrass- and ryegrass/white clover-based grasslands in a moist temperate climate. PLoS ONE 6, E26176. DOI:10.1371/journal.pone.0026176.
Moorman, T. B., Parkin, T. B., Kaspar, T. C. & Jaynes, D. B. (2010). Denitrification activity, wood loss, and N2O emissions over 9 years from a wood chip bioreactor. Ecological Engineering 36, 15671574.
Nercessian, O., Bienvenu, N., Moreira, D., Prieur, D. & Jeanthon, C. (2005). Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments. Environmental Microbiology 7, 118132.
New Zealand Government (2010). Climate Change (Agriculture Sector) Regulations 2010 (SR 2010/335). Wellington, New Zealand: Published under the authority of the New Zealand Government.
Pangala, S. R., Reay, D. S. & Heal, K. V. (2010). Mitigation of methane emissions from constructed farm wetlands. Chemosphere 78, 493499.
Philippot, L. (2005). Tracking nitrate reducers and denitrifiers in the environment. Biochemical Society Transactions 33, 200204.
Philippot, L. & Hallin, S. (2006). Molecular Analyses of Soil Denitrifying Bacteria. Wallingford, UK: CABI.
Philippot, L., Hallin, S. & Schloter, M. (2007). Ecology of denitrifying prokaryotes in agricultural soil. Advances in Agronomy 96, 249305.
Philippot, L., Andert, J., Jones, C. M., Bru, D. & Hallin, S. (2011). Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Global Change Biology 17, 14971504.
Schipper, L. A., Robertson, W. D., Gold, A. J., Jaynes, D. B. & Cameron, S. C. (2010). Denitrifying bioreactors – an approach for reducing nitrate loads to receiving waters. Ecological Engineering 36, 15321543.
Schmidt, C. A. & Clark, M. W. (2012). Efficacy of a denitrification wall to treat continuously high nitrate loads. Ecological Engineering 42, 203211.
Shih, R., Robertson, W. D., Schiff, S. L. & Rudolph, D. L. (2011). Nitrate controls methyl mercury production in a streambed bioreactor. Journal of Environmental Quality 40, 15861592.
Simon, F. G. & Müller, W. W. (2004). Standard and alternative landfill capping design in Germany. Environmental Science and Policy 7, 277290.
Stark, C. H. & Richards, K. G. (2008). The continuing challenge of agricultural nitrogen loss to the environment in the context of global change and advancing research. Dynamic Soil, Dynamic Plant 2, 112.
Stevens, C. J. & Quinton, J. N. (2008). Policy implications of pollution swapping. Physics and Chemistry of the Earth Parts A/B/C 34, 589594.
Stevens, C. J. & Quinton, J. N. (2009). Diffuse pollution swapping in arable agricultural systems. Critical Reviews in Environment Science and Technology 39, 478520.
Tanner, C. C., Sukias, J. P. S., Headley, T. R., Yates, C. R. & Stott, R. (2012). Constructed wetlands and denitrifying bioreactors for on-site and decentralised wastewater treatment: comparison of five alternative configurations. Ecological Engineering 42, 112123.
Themelis, N. K. & Ulloa, P. A. (2007). Methane generation in landfills. Renewable Energy 32, 12431257.
Throbäck, I. N., Enwall, K., Jarvis, A. & Hallin, S. (2004). Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology and Ecology 49, 401417.
Wallenstein, M. D., Myrold, D. D., Firestone, M. & Voytek, M. (2006). Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecological Applications 16, 21432152.
Warnecke, S., Schipper, L. A., Bruesewitz, D. A., Mcdonald, I. & Cameron, S. (2011). Rates, controls and potential adverse effects of nitrate removal in a denitrification bed. Ecological Engineering 37, 511522.
Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J. & Crowley, D. (2010). Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems and Environment 139, 469475.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed