Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T07:03:15.824Z Has data issue: false hasContentIssue false

The osmotic pressure and the concentration of some solutes of the intestinal contents and the faeces of the cow, in relation to the absorption of the minerals

Published online by Cambridge University Press:  27 March 2009

E. J. van Weerden
Affiliation:
Laboratory of Animal Physiology, Agricultural University, Wageningen, Holland

Extract

In the cows' intestine there is no isotony with the blood serum. In the upper part of the small intestine the chyme is strongly hypertonic but as it passes along the intestinal tract to the large intestine it becomes more and more hypotonic. The hypertony in the small intestine is not due to inorganic elements but is caused by organic non-electrolytes.

In the large intestine hypotony is the result of strong selective absorption of sodium against a concentration gradient.This is an important aspect of the sodium metabolism of the cow. Chlorine is also absorbed from the large intestine against a concentration gradient.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1961

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abderhalden, E. (1906). Lehrbuch der Physiologischen Chemie. Berlin, Wien: Urban und Schwarzenberg.Google Scholar
Annison, E. F. (1954). Biochem. J. 58, 670.CrossRefGoogle Scholar
Boogaerdt, J. (1954). De toestand van het calcium in het bloed bij de grote huisdieren. Thesis, Utrecht.Google Scholar
Boyne, A. W., Campbell, R. M., Davidson, J. & Cuthbertson, D. P. (1956). Brit. J. Nutr. 10, 325.CrossRefGoogle Scholar
Brouwer, E. (1934). Versl., Rijkslandb.Proefst. 's Grav., no. 40 C.Google Scholar
Brouwer, E. & Weerden, E. J. van (1956 a). Nature, Lond., 178, 211.CrossRefGoogle Scholar
Brouwer, E. & Weerden, E. J. van (1956 b). Acta physiol. pharm. néerl. 5.Google Scholar
Bucher, G. R., Anderson, C. E. & Robinson, C. S. (1950). Amer. J. physiol. 163, 1.CrossRefGoogle Scholar
Budolfsen, Sv. E. (1954). Acta physiol. Scand. 32, 148.CrossRefGoogle Scholar
Budolfsen, Sv. E. (1956). Actaphysiol. Scand. 38, 31.CrossRefGoogle Scholar
debeer, E. J., Johnston, C. G. & Wilson, D. W. (1935). J. Biol. Chem. 108, 113.CrossRefGoogle Scholar
Dennis, C. & Visscher, M. B. (1940). Amer. J. physiol. 129, 176.CrossRefGoogle Scholar
Dukes, H. H. (1947). The Physiology of Domestic Animals. New York: Comstook Publ. Comp. Inc.Google Scholar
Elsden, S. R., Hitchcock, M. W. S., Marshall, R. A. & Phillipson, A. T. (1946). J. Exp. Biol. 22, 191.CrossRefGoogle Scholar
Field, H., Swell, L., Flick, D. F. & Dailey, R. E. (1954 a). Circulation, 9, 32.CrossRefGoogle Scholar
Field, H., Dailey, R. E., Boyd, R. S. & Swell, L. (1954 b). Amer. J. Physiol. 179, 477.CrossRefGoogle Scholar
Field, H., Swell, L., Dailey, R. E., Trout, E. C. & Boyd, R. S. (1955). Circulation, 12, 625.CrossRefGoogle Scholar
Gamble, J. L. (1950). Chemical Anatomy, Physiology and Pathology of Extracellular Fluid. Harvard University Press, Cambridge, Mass.Google Scholar
Gotch, F., Nadell, J. & Edelman, I. S. (1957). J. Clin. Invest. 36, 289.CrossRefGoogle Scholar
Holtz, A. H. (1951). Chem. Weekbl. 47, 907.Google Scholar
Ingraham, R. C. & Visscher, M. B. (1936). Amer. J. Physiol. 114, 676.CrossRefGoogle Scholar
Lavietes, P. H. (1935). In: Peters, J. P., Body Water, p. 199. Springfield and Baltimore: Charles C. Thomas.Google Scholar
Lewis, D., Hill, K. J. & Annison, E. F. (1957). Biochem. J. 66, 587.CrossRefGoogle Scholar
Masson, M. J. & Phillipson, A. T. (1952). J. Physiol. 116, 98.CrossRefGoogle Scholar
McAnally, R. A. (1944). J. Exp. Biol. 20, 130.CrossRefGoogle Scholar
McClymont, G. L. (1951). Aust. J. Agric. Res. 2, 92, 158.CrossRefGoogle Scholar
Mcdonald, I. W. (1948). Biochem. J. 42, 584.CrossRefGoogle Scholar
Ostwald, W. & Luther, R. (1925). Hand-und Hilfsbuch zur Ausführung physiko-chemischer Messungen. Leipzig: Akad. Verlagsgesellsohaft m.b.H.Google Scholar
Oyaert, W. (1955). Studie van de wijziging der minerale en stikstofhoudende fractie van het voeder tijdens de passage doorheen de voormagen. Thesis, Ghent.Google Scholar
Parsons, D. S. (1956). Quart. J. Exp. Phys. 41, 410.CrossRefGoogle Scholar
Quarterman, J., Phillips, G. D. & Lampkin, G. H. (1957). Nature, Lond., 180, 552.CrossRefGoogle Scholar
Ross, E. J. & Spencer, A. G. (1954). Clin. Sci. 13, 555.Google Scholar
Scheel, K. C. (1936). Z. Anal. Chem. 105, 256.CrossRefGoogle Scholar
Sobotka, H. (1937). Physiological Chemistry of the Bile. Baltimore: The Williams and Wilkins Comp.Google Scholar
Solomon, A. K. (1952). Fed. Proc. 11, 722.Google Scholar
Spencer, A. G., Ross, E. J. & Lloyd-Thomas, H. G. L. (1954). Brit. Med. J. 1, 603.CrossRefGoogle Scholar
Sweet, N. J., Nadell, J. & Edelman, I. S. (1957). J. Clin. Invest. 36, 279.CrossRefGoogle Scholar
Verzar, F. & McDougall, E. J. (1936). Absorption from the Intestine. London, New York, Toronto: Longmans, Green and Co.Google Scholar
Visscher, M. B., Varco, R. H., Carr, C. W., Dean, R. B. & Erickson, D. (1944). Amer. J. Physiol. 141, 488.CrossRefGoogle Scholar
Weerden, E. J. van (1959). Over de osmotisohe waarde en de gehalten aan enige opgeloste bestanddelen van de darminhoud en de mest bij het rund, in verband gebracht met de resorptie der mineralen. Thesis, Wageningen.Google Scholar
Welch, C. S., Wakefield, E. G. & Adams, M. (1936). Arch. Intern. Med. 58, 1095.CrossRefGoogle Scholar
Wilson, T. H. & Kazyak, L. (1957). Biochem. Biophys. Acta, 24, 124.CrossRefGoogle Scholar