Skip to main content Accessibility help
×
Home

A new approach for determining rice critical nitrogen concentration

Summary

A reliable evaluation of crop nutritional status is crucial for supporting fertilization aiming at maximizing qualitative and quantitative aspects of production and reducing the environmental impact of cropping systems. Most of the available simulation models evaluate crop nutritional status according to the nitrogen (N) dilution law, which derives critical N concentration as a function of above-ground biomass. An alternative approach, developed during a project carried out with students of the Cropping Systems Masters course at the University of Milan, was tested and compared with existing models (N dilution law and approaches implemented in EPIC and DAISY models). The new model (MAZINGA) reproduces the effect of leaf self-shading in lowering plant N concentration (PNC) through an inverse of the fraction of radiation intercepted by the canopy. The models were tested using data collected in four rice (Oryza sativa L.) experiments carried out in Northern Italy under potential and N-limited conditions. MAZINGA was the most accurate in identifying the critical N concentration, and therefore in discriminating PNC of plants growing under N-limited and non-limited conditions, respectively. In addition, the present work proved the effectiveness of crop models when used as tools for supporting education.

Copyright

Corresponding author

*To whom all correspondence should be addressed. Email: roberto.confalonieri@unimi.it

References

Hide All
Acreche, M. M. & Slafer, G. A. (2009). Variation of grain nitrogen content in relation with grain yield in old and modern Spanish wheats grown under a wide range of agronomic conditions in a Mediterranean region. Journal of Agricultural Science, Cambridge 147, 657667.
Alam, M. M., Ladha, J. K., Khan, S. R., Foyjunessa, , Harun-ur-rarun-ur-rashid, Khan, A. H. & Buresh, R. J. (2005). Leaf color chart for managing nitrogen fertilizer in lowland rice in Bangladesh. Agronomy Journal 97, 949959.
Antunes, M. A. H., Brejda, J. J., Chen, X., Leavitt, B. C., Tsvetsinskaya, E. A., Weiss, A. & Arkebauer, T. J. (1998). Team Research: A class project on scaling up from leaf to canopy photosynthesis. Journal of Natural Resources and Life Sciences Education 27, 4954.
Caloin, M. & Yu, O. (1984). Analysis of the time course of change in nitrogen content in Dactylis glomerata L. using a model of plant growth. Annals of Botany 54, 6976.
Clark, L. J., Gowing, D. J. G., Lark, R. M., Leeds-Harrison, P. B., Miller, A. J., Wells, D. M., Whalley, W. R. & Whitmore, A. P. (2005). Sensing the physical and nutritional status of the root environment in the field: a review of progress and opportunities. Journal of Agricultural Science, Cambridge 143, 347358.
Confalonieri, R. & Bocchi, S. (2005). Evaluation of CropSyst for simulating the yield of flooded rice in northern Italy. European Journal of Agronomy 23, 315326.
Confalonieri, R., Acutis, M., Bellocchi, G. & Donatelli, M. (2009). Multi-metric evaluation of the models WARM, CropSyst, and WOFOST for rice. Ecological Modelling 220, 13951410.
Confalonieri, R., Stroppiana, D., Boschetti, M., Gusberti, D., Bocchi, S. & Acutis, M. (2006). Analysis of rice sample size variability due to development stage, nitrogen fertilization, sowing technique and variety using the visual jackknife. Field Crops Research 97, 135141.
Ghosh, M., Mandal, B. K., Mandal, B. B., Lodh, S. B. & Dash, A. K. (2004). The effect of planting date and nitrogen management on yield and quality of aromatic rice (Oryza sativa). Journal of Agricultural Science, Cambridge 142, 183191.
Graves, A. R., Hess, T., Matthews, R. B., Stephens, W. & Mason, T. (2002). Crop simulation models as tools in education. Journal of Natural Resources and Life Sciences Education 31, 4854.
Greenwood, D. J., Lemaire, G., Gosse, G., Cruz, P., Draycott, A. & Neeteson, J. J. (1990). Decline in percentage N of C3 and C4 crops with increasing plant mass. Annals of Botany 66, 425436.
Hansen, S., Jensen, H. E., Nielsen, N. E. & Svendsen, H. (1991). Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY. Fertilizer Research 27, 245259.
Jaggard, K. W., Qi, A. & Armstrong, M. J. (2009). A meta-analysis of sugarbeet yield response to nitrogen fertilizer measured in England since 1980. Journal of Agricultural Science, Cambridge 147, 287301.
Jeuffroy, M. H., Ney, B. & Ourry, A. (2002). Integrated physiological and agronomic modelling of N capture and use within the plant. Journal of Experimental Botany 53, 809823.
Justes, E., Mary, B., Meynard, J. M., Machet, J. M. & Thelier-Huche, L. (1994). Determination of a critical nitrogen dilution curve for winter wheat crops. Annals of Botany 74, 397407.
Lin, X., Zhou, W., Zhu, D., Chen, H. & Zhang, Y. (2006). Nitrogen accumulation, remobilization and partitioning in rice (Oryza sativa L.) under an improved irrigation practice. Field Crop Research 96, 448454.
Meynard, J. M., Cerf, M., Guichard, L., Jeuffroy, M. H. & Makowsky, D. (2001). Nitrogen, decision support and environmental management. In Proceedings of the 11th Nitrogen Workshop, 9–12 September 2001, Reims, France (Ed. Recous, S.), pp. 389390. Reims, France: INRA.
Naylor, R. E. L. & Stephen, N. H. (1993). Effects of nitrogen and the plant growth regulator chlormequat on grain size, nitrogen content and amino acid composition of triticale. Journal of Agricultural Science, Cambridge 120, 159168.
Ntanos, D. A. & Koutroubas, S. D. (2002). Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crop Research 74, 93101.
Peng, S., Garcia, F. V., Laza, R. C., Sanico, A. L., Visperas, R. M. & Cassman, K. G. (1996). Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice. Field Crop Research 47, 243252.
Salette, J. & Lemaire, G. (1981). Sur la variation de la teneur en azote des graminées fourragères pendant leur croissance: Formulation d'une loi de diluition. Compte Rendus de l'Académie des Sciences de Paris, séries III 292, 875878.
Seginer, I. (2004). Plant spacing effect on the nitrogen concentration of a crop. European Journal of Agronomy 21, 369377.
Senanayake, N., Naylor, R. E. L. & DE Datta, S. K. (1996). Effect of nitrogen fertilization on rice spikelet differentiation and survival. Journal of Agricultural Science, Cambridge 127, 303309.
Sheehy, J. E., Dionora, M. J. A., Mitchell, P. L., Peng, S., Cassman, K. G., Lemaire, G. & Williams, R. L. (1998). Critical nitrogen concentrations: implications for high-yielding rice (Oryza sativa L.) cultivars in the tropics. Field Crops Research 59, 3141.
Stöckle, C. O. & Debaeke, P. (1997). Modeling crop nitrogen requirements: a critical analysis. European Journal of Agronomy 7, 161169.
Stöckle, C. O., Donatelli, M. & Nelson, R. (2003). CropSyst, a cropping systems simulation model. European Journal of Agronomy 18, 289307.
Stroppiana, D., Boschetti, M., Brivio, P. A. & Bocchi, S. (2009). Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crops Research 111, 119129.
Williams, J. R., Jones, C. A., Kiniry, J. R. & Spanel, D. A. (1989). The EPIC crop growth model. Transaction of the ASAE 32, 497511.
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.
Zhang, Y.-H., Fan, J.-B., Zhang, Y.-L., Wang, D.-S., Huang, Q.-W. & Sheng, Q.-R. (2007). N accumulation and translocation in four Japonica rice cultivars at different N rates. Pedosphere 17, 792800.

A new approach for determining rice critical nitrogen concentration

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed