Skip to main content Accessibility help
×
Home

Morphological responses of wheat (Triticum aestivum L.) roots to phosphorus supply in two contrasting soils

  • H. M. YUAN (a1), M. BLACKWELL (a2), S. MCGRATH (a3), T. S. GEORGE (a4), S. H. GRANGER (a2), J. M. B. HAWKINS (a2), S. DUNHAM (a3) and J. B. SHEN (a1)...

Summary

To cope with phosphorus (P) deficiency, plants adapt root morphology to enhance inorganic P (Pi) acquisition from soil by allocating more biomass to roots, but whether the responses can be modified across gradients of P supply is not fully understood. The present study examined changes in root-length density (RLD), root-hair density (RHD) and root-hair length (RHL) of wheat (Triticum aestivum L.) in two contrasting soils, the Rough and Barnfield soils. Wheat plants were grown for 3 weeks in thin-plate rhizotrons in two soils with additions of 0, 10, 25, 50, 100 and 200 mg P/kg soil. Contrary to published literature, as P additions increased it was observed that a concomitant increase in RHL (250 to 1054 µm in the Rough soil and 303–1075 µm in the Barnfield soil) and RHD (57 to 122/mm in the Rough soil and 56–120/mm in the Barnfield soil), while RLD generally decreased (2480–1130 cm/cm3 in the Rough soil and 1716–865 cm/cm3 in the Barnfield soil). The levels of added P that resulted in critical P concentrations in the soils enabling maximum shoot biomass production were 50 mg/kg P in the Rough soil and 100 mg/kg P in the Barnfield soil, and these additions influenced root morphological changes. Under severe P deficiency, P supply increased RHL and RHD, but RLD was decreased. Improvement in lateral root and root-hair responses in wheat at extreme P deficiency may be a worthy target for breeding more sustainable genotypes for future agroecosystems.

Copyright

Corresponding author

*To whom all correspondence should be addressed. Email: 08036@cau.edu.cn

References

Hide All
Barley, K. P. & Rovira, A. D. (1970). The influence of root hairs on the uptake of phosphate. Communications in Soil Science and Plant Analysis 1, 287292.
Bates, T. R. & Lynch, J. P. (1996). Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant, Cell and Environment 19, 529538.
Bates, T. R. & Lynch, J. P. (2001). Root hairs confer a competitive advantage under low phosphorus availability. Plant and Soil 236, 243250.
Batjes, N. H. (1997). A world dataset of derived soil properties by FAO-UNESCO soil unit for global modelling. Soil Use and Management 13, 916.
Brouwer, R. (1983). Functional equilibrium: sense or nonsense? Netherlands Journal of Agricultural Science 31, 335348.
Brown, L. K., George, T. S., Thompson, J. A., Wright, G., Lyon, J., Depuy, L., Hubbard, S. F. & White, P. J. (2012). What are the implications of variation in root hair length on tolerance to phosphorus deficiency in combination with water stress in barley (Hordeum vulgare)? Annals of Botany 110, 319328.
Brown, L. K., George, T. S., Barrett, G. E., Hubbard, S. F. & White, P. J. (2013 a). Interactions between root hair length and arbuscularmycorrhizal colonisation in phosphorus deficient barley (Hordeum vulgare). Plant and Soil 372, 195205.
Brown, L. K., George, T. S., Dupuy, L. & White, P. J. (2013 b). A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability? Annals of Botany 112, 317330.
Caradus, J. R. (1979). Selection for root hair length in white clover (Trifolium repens L.). Euphytica 28, 489494.
Clarkson, D. T. (1991). Root structure and site of ion uptake. In Plant Roots: The Hidden Half (Eds Waisel, Y., Eshel, A. & Kafkafi, U.), pp. 417453. New York: Marcel Dekker, Inc.
Dechassa, N., Schenk, M. K., Claassen, N. & Steingrobe, B. (2003). Phosphorus efficiency of cabbage (Brassica oleraceae L. var. capitata), carrot (Daucus carota L.), and potato (Solanum tuberosum L.). Plant and Soil 250, 215224.
Delhaize, E., James, R. A. & Ryan, P. R. (2012). Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soils. New Phytologist 195, 609619.
Dolan, L. (2001). The role of ethylene in root hair growth in Arabidopsis. Journal of Plant Nutrition and Soil Science 164, 141145.
Drew, M. C. (1975). Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytologist 75, 479490.
FAO (2006). Fertilizer Use by Crop. Fertilizer and Plant Nutrition Bulletin 17. Rome: FAO.
FAO-UNESCO (1999). Soil Map of the World, Revised Legend. World Soil Resources Report 60. Rome: FAO.
Föhse, D. & Jungk, A. (1983). Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. Plant and Soil 74, 359368.
Föhse, D., Claassen, N. & Jungk, A. (1991). Phosphorus efficiency of plants. II. Significance of root radius, root hairs and cation–anion balance for phosphorus influx in seven plant species. Plant and Soil 132, 261272.
Gahoonia, T. S. & Nielsen, N. E. (1998). Direct evidence on participation of root hairs in phosphorus (32P) uptake from soil. Plant and Soil 198, 147152.
Gahoonia, T. S. & Nielsen, N. E. (2004). Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant and Soil 262, 5562.
Gahoonia, T. S., Care, D. & Nielsen, N. E. (1997). Root hairs and phosphorus acquisition of wheat and barley cultivars. Plant and Soil 191, 181188.
Gahoonia, T. S., Nielsen, N. E. & Lyshede, O. B. (1999). Phosphorus (P) acquisition of cereal cultivars in the field at three levels of P fertilization. Plant and Soil 211, 269281.
George, T. S., Brown, L. K., Ramsay, L., White, P. J., Newton, A. C., Bengough, A. G., Russell, J. & Thomas, W. T. B. (2014). Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). New Phytologist 203, 195205.
Green, R. L., Beard, J. B. & Oprisko, M. J. (1991). Root hairs and root lengths in nine warm-season turfgrass genotypes. Journal of the American Society for Horticultural Science 116, 965969.
Haling, R. E., Simpson, R. J., Culvenor, R. A., Lambers, H. & Richardson, A. E. (2011). Effect of soil acidity, soil strength and macropores on root growth and morphology of perennial grass species differing in acid-soil resistance. Plant Cell and Environment 34, 444456.
Haling, R. E., Brown, L. K., Bengough, A. G., Young, I. M., Hallett, P. D., White, P. J. & George, T. S. (2013). Root hairs improve root penetration, root–soil contact and phosphorus acquisition in soils of different strength. Journal of Experimental Botany 64, 37113721.
Haling, R. E., Brown, L. K., Bengough, A. G., Valentine, T. A., White, P. J., Young, I. M. & George, T. S. (2014). Root hair length and rhizosheath mass depend on soil porosity, strength and water content in barley genotypes. Planta 239, 643651.
Hill, J. O., Simpson, R. J., Moore, A. D. & Chapman, D. F. (2006). Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition. Plant and Soil 286, 719.
Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil 237, 173195.
Hoerl, A. E. & Kennard, R. W. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 5567.
Itoh, S. & Barber, S. A. (1983). Phosphorus uptake by six plant species as related to root hairs. Agronomy Journal 75, 457461.
Jing, J. Y., Zhang, F. S., Rengel, Z. & Shen, J. B. (2012). Localized fertilization with P plus N elicits an ammonium-dependent enhancement of maize root growth and nutrient uptake. Field Crops Research 133, 176185.
Johnston, A. E., Poulton, P. R. & White, R. P. (2013). Plant-available soil phosphorus. Part II: The response of arable crops to Olsen P on a sandy clay loam and a silty clay loam. Soil Use and Management 29, 1221.
Johnston, A. E., Poulton, P. R., Fixen, P. E. & Curtin, D. (2014). Phosphorus: its efficient use in agriculture. Advances in Agronomy 123, 177228.
Jungk, A. (2001). Root hairs and the acquisition of plant nutrients from soil. Journal of Plant Nutrition and Soil Science 164, 121129.
Krasilnikoff, G., Gahoonia, T. S. & Nielsen, N. E. (2001). Phosphorus uptake from sparingly available soil-P by cowpea (Vigna unguiculata) genotypes. In Integrated Plant Nutrient Management in sub-Saharan Africa: from Concept to Practice (Eds Vanlauwe, B., Diels, J., Sanginga, N. & Merckx, R.), pp. 239250. Wallingford, UK: CABI Publishing.
Lambers, H. Y., Shane, M. W., Cramer, M. D., Pearse, S. J. & Veneklass, E. J. (2006). Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Annals of Botany 98, 693713.
Li, H., Huang, G., Meng, Q., Ma, L., Yuan, L., Wang, F., Zhang, W., Cui, Z., Shen, J., Chen, X., Jiang, R. & Zhang, F. (2011). Integrated soil and plant phosphorus management for crop and environment in China. Plant and Soil 349, 157167.
Lynch, J. P. & Brown, K. M. (2008). Root strategies for phosphorus acquisition. In The Ecophysiology of Plant-Phosphorus Interactions (Eds White, P. J. & Hammond, J. P.), pp. 83116. Plant Ecophysiology 7. Dordrecht, Netherlands: Springer Science + Business Media B.V.
Mallarino, A. P. & Blackmer, A. M. (1992). Comparison of methods for determining critical concentrations of soil test phosphorus for corn. Agronomy Journal 84, 850856.
Marschner, H. (1995). Mineral Nutrition of Higher Plants, 2nd edn.London: Academic Press.
Niu, Y. F., Chai, R. S., Jin, G. L., Wang, H., Tang, C. X. & Zhang, Y. S. (2013). Responses of root architecture development to low phosphorus availability: a review. Annals of Botany 112, 391408.
Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. (1954). Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular 939:1–19. Washington, DC: Government Printing Office.
Peret, B., Clement, M., Nussaume, L. & Desnos, T. (2011). Root developmental adaptation to phosphate starvation: better safe than sorry. Trends in Plant Science 16, 442450.
Poulton, P. R., Johnston, A. E. & White, R. P. (2013). Plant-available soil phosphorus. Part I: The response of winter wheat and spring barley to Olsen P on a silty clay loam. Soil Use and Management 29, 411.
Pypers, P. (2006). Isotopic approaches to characterize P availability and P acquisition by maize and legumes in highly weathered soils. Ph.D. Dissertation, Katholieke Universiteit Leuven, Flanders, Belgium.
Raghothama, K. G. (2005). Phosphorus and plant nutrition: an overview. In Phosphorus: Agriculture and the Environment (Eds Sims, J. T. & Sharpley, A. N.), pp. 355378. Agronomy Monograph 46. Madison, WI: American Society of Agronomy.
Rook, A. J. & Dhanoa, M. S. (1992). Regression analyses for multicollinear data using Genstat. Genstat Newsletter 27, 3945.
Ryser, P. & Lambers, H. (1995). Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply. Plant and Soil 170, 251265.
SAS Institute Inc. (1999). SAS/STAT User's Guide, Version 8, Cary, NC: SAS Institute Inc.
Schachtman, D. P., Reid, R. J. & Ayling, S. M. (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiology 116, 447453.
Schjørring, J. K. & Nielsen, N. E. (1987). Root length and phosphorus uptake by four barley cultivars grown under moderate deficiency of phosphorus in field experiments. Journal of Plant Nutrition 10, 12891295.
Schmidt, W. (2001). From faith to fate: ethylene signaling in morphogenetic responses to P and Fe deficiency. Journal of Plant Nutrition and Soil Science 164, 147154.
Shen, J. B., Yuan, L. X., Zhang, J. L., Li, H. G., Bai, Z. H., Chen, X. P., Zhang, W. F. & Zhang, F. S. (2011). Phosphorus dynamics: from soil to plant. Plant Physiology 156, 9971005.
Shen, J. B., Li, C. J., Mi, G. H., Li, L., Yuan, L. X., Jiang, R. F. & Zhang, F. S. (2013). Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. Journal of Experimental Botany 64, 11811192.
Steingrobe, B. (2001). Root renewal of sugar beet as a mechanism of P uptake efficiency. Journal of Plant Nutrition and Soil Science 164, 533539.
Teng, W., Deng, Y., Chen, X. P., Xu, X. F., Chen, R. Y., Lv, Y., Zhao, Y. Y., Zhao, X. Q., He, X., Li, B., Tong, Y. P., Zhang, F. S. & Li, Z. S. (2013). Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. Journal of Experimental Botany 64, 14031411.
Vandamme, E., Renkens, M., Pypers, P., Smolders, E., Vanlauwe, B. & Merckx, R. (2013). Root hairs explain P uptake efficiency of soybean genotypes grown in a P-deficient Ferralsol. Plant and Soil 369, 269282.
Veneklaas, E. J., Lambers, H., Bragg, J., Finnegan, P. M., Lovelock, C. E., Plaxton, W. C., Price, C. A., Scheible, W., Shane, M. W., White, P. J. & Raven, J. A. (2012). Opportunities for improving phosphorus-use efficiency in crop plants. New Phytologist 195, 306320.
Wang, L., Liao, H., Yan, X., Zhuang, B. & Dong, Y. (2004). Genetic variability for root hair traits as related to phosphorus status in soybean. Plant and Soil 261, 7784.
Yan, X. L., Lynch, J. & Beebe, S. (1995). Genetic variation for phosphorus efficiency of common bean in contrasting soil types. I. Vegetative response. Crop Science 35, 10861093.
Zhao, F., McGrath, S. P. & Crosland, A. R. (1994). Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Communications in Soil Science and Plant Analysis 25, 407418.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed