Skip to main content Accessibility help

Methane emissions and growth performance of young Nellore bulls fed crude glycerine- v. fibre-based energy ingredients in low or high concentrate diets

  • J. F. LAGE (a1), E. SAN VITO (a2), R. A. REIS (a2), E. E. DALLANTONIA (a2), L. R. SIMONETTI (a2), I. P. C. CARVALHO (a3), A. BERNDT (a4), M. L. CHIZZOTTI (a5), R. T. S. FRIGUETTO (a6) and T. T. BERCHIELLI (a2)...


A total of 70 Nellore bulls (18 ± 3 months of age) were used to determine the effects of crude glycerine (CG) replacing starch- v. fibre-based energy ingredients in low (LC; 0·40 concentrate) or high concentrate (HC; 0·60 concentrate) – on a dry matter (DM) basis – on DM intake (DMI), methane emissions and growth. Ten bulls were slaughtered (reference group) to obtain the carcass gain (CrG). The 60 remaining bulls (374 ± 24·5 kg) were allocated to a 2 × 3 factorial arrangement (two concentrate levels, LC or HC; and three feeding regimes, FR). The FR were: CO – without CG and maize as an ingredient of concentrate; CGM – inclusion of CG (0·10 of DM) replacing maize in the concentrate; and CGSH – inclusion of CG (0·10 of DM) replacing soybean hulls (SH) in the concentrate. Bulls fed LC or HC had similar DMI (kg/d) and growth. The DMI and average daily gain (ADG) were similar among FR. Concentrate level and FR tended to interact for methane emissions (g) per kg DMI. Bulls fed CGM had a greater G : F (g CrG/kg DMI) than those fed CO or CGSH diets. Increasing dietary concentrate (0·40–0·60) did not affect intake, methane emissions, or growth. Inclusion of CG in diets to replace SH in LC diets tended to decrease methane emissions from animals. When CG replaces SH in the diets, CrG and G:F (g CrG/kg DMI) are decreased compared with bulls fed CGM.


Corresponding author

*To whom all correspondence should be addressed. Email:;


Hide All
Abo El-Nor, S., Abughazaleh, A. A., Potu, R. B., Hastings, D. & Khattab, M. S. A. (2010). Effects of differing levels of glycerol on rumen fermentation and bacteria. Animal Feed Science and Technology 162, 99105.
AOAC (1990). Official Methods of Analysis, 15th edn, Arlington, Virginia, USA: Association of Official Analytical Chemists.
Avila, J. S., Chaves, A. V., Hernandez-Calva, M., Beauchemin, K. A., McGinn, S. M., Wang, Y., Hasrtard, O. M. & McAllister, T. A. (2011). Effects of replacing barley grain in feedlot diets with increasing levels of glycerol on in vitro fermentation and methane production. Animal Feed Science and Technology 166–167, 265268.
Avila-Stagno, J., Chaves, A. V., He, M. L., Harstad, O. M., Beauchemin, K. A., McGinn, S. M. & McAllister, T. A. (2013). Effects of increasing concentrations of glycerol in concentrate diets on nutrient digestibility, methane emissions, growth, fatty acid profiles and carcass traits of lambs. Journal of Animal Science 91, 829837.
Avila-Stagno, J., Chaves, A. V., Ribeiro Júnior, G. O., Ungerfeld, E. M. & McAllister, T. A. (2014). Inclusion of glycerol in forage diets increases methane production in a rumen simulation technique system. British Journal of Nutrition 111, 829835.
Bartoň, L., Bureš, D., Homolka, P., Jančík, F., Marounek, M. & Řehák, D. (2013). Effects of long-term feeding of crude glycerin on performance, carcass traits, meat quality, and blood and rumen metabolites of finishing bulls. Livestock Science 155, 5359.
Biebl, H., Menzel, K., Zeng, A. P. & Deckwer, W. D. (1999). Microbial production of 1,3-propanediol. Applied Microbiology and Biotechnology 52, 289297.
BRAZIL (1997). Ministério da agricultura, Pecuária e Abastecimento, Regulamento da Inspeção Industrial e Sanitária de Produtos de Origem Animal [Food of Animal Origin Sanitary and Industry Inspection]. Brasília: Ministério da Agricultura, Pecuária e Abastecimento. In Portuguese.
Buckley, B. A., Baker, J. F., Dickerson, G. E. & Jenkins, T. G. (1990). Body composition and tissue distribution from birth to 14 months for three biological types of beef heifers. Journal of Animal Science 68, 3109.
Church, D. C. (1988). The Ruminant Animal: Digestive Physiology and Nutrition. Englewood Cliffs, NJ: Prentice Hall.
Cole, N. A. & Hutcheson, D. P. (1981). Influence of beef steers of two sequential short periods of feed and water deprivation. Journal of Animal Science 53, 907915.
Cole, N. A. & Hutcheson, D. P. (1985). Influence of prefast feed intake on recovery from feed and water deprivation by beef steers. Journal of Animal Science 60, 772780.
Drouillard, J. S. (2008). Glycerin as a feed for ruminants: using glycerin in high-concentrate diets. Journal of Animal Science 86 (Suppl. 2), 392. (Abstract).
Drouillard, J. S. (2012). Utilization of crude glycerin in beef cattle. In Biofuel Co-products as Livestock Feed – Opportunities and Challenges (Ed. Makkar, H. P. S.), pp. 155161. Rome, Italy: FAO.
Etherton, T. D. (1982). The role of insulin-receptor in interactions in regulation of nutrient utilization by skeletal muscle and adipose tissue; a review. Journal of Animal Science 54, 5867.
Forbes, J. M. (2007). A personal view of how ruminant animals control their intake and choice of food: minimal total discomfort. Nutrition Research Reviews 20, 132146.
Greiner, S. P., Rouse, G. H., Wilson, D. E., Cundiff, L. V. & Wheeler, T. L. (2003). The relationship between ultrasound measurements and carcass fat thickness and longissimus muscle area in beef cattle. Journal of Animal Science 81, 676682.
Holtshausen, L., Schwartzkopf-Genswein, K. S. & Beauchemin, K. A. (2013). Ruminal pH profile and feeding behaviour of feedlot cattle transitioning from a high-forage to a high-concentrate diet. Canadian Journal of Animal Science 93, 529533.
Hsu, J. T., Faulkner, D. B., Garleb, K. A., Barclay, R. A., Fahey, G. C. Jr. & Berger, L. L. (1987). Evaluation of corn fiber, cottonseed hulls, oat hulls, and soybean hulls as roughage sources for ruminants. Journal of Animal Science 65, 244255.
Huntington, G. B. (1997). Starch utilization by ruminants: from basics to the bunk. Journal of Animal Science 75, 852867.
Huntington, G. B., Harmon, D. L. & Richards, C. J. (2006). Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle. Journal of Animal Science 84 (E-Suppl.), E14E24.
Ipharraguerre, I. R. & Clark, J. H. (2003). Soyhulls as an alternative feed for lactating dairy cows: a review. Journal of Dairy Science 86, 10521073.
Johnson, K. A. & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science 73, 24832492.
Johnson, K. A., Huyler, M., Westburg, H., Lamb, B. & Zimmerman, P. (1994). Measurement of methane emissions from ruminant livestock using a SF6 tracer technique. Environmental Science & Technology 28, 359362.
Lage, J. F., Paulino, P. V. R., Valadares Filho, S. C., Souza, E. J. O., Duarte, M. S., Benedeti, P. D. B., Souza, N. K. P. & Cox, R. B. (2012). Influence of genetic type and level of concentrate in the finishing diet on carcass and meat quality traits in beef heifers. Meat Science 90, 770774.
Lee, S. Y., Lee, S. M., Cho, Y. B., Kam, D. K., Lee, S. C., Kim, C. H. & Seo, S. (2011). Glycerol as a feed supplement for ruminants: In vitro fermentation characteristics and methane production. Animal Feed Science and Technology 166–167, 269274.
Lovett, D. K., Stack, L. J., Lovell, S., Callan, J., Flynn, B., Hawkins, M. & O'Mara, F. P. (2005). Manipulating enteric methane emissions and animal performance of late-lactation dairy cows through concentrate supplementation at pasture. Journal of Dairy Science 88, 28362842.
McGeough, E. J., O'Kiely, P., Hart, K. J., Moloney, A. P., Boland, T. M. & Kenny, D. A. (2010). Methane emissions, feed intake, performance, digestibility, and rumen fermentation of finishing beef cattle offered whole-crop wheat silages differing in grain content. Journal of Animal Science 88, 27032716.
McLeod, K. R. & Baldwin, R. L. (2000). Effects of diet forage: concentrate ratio and metabolizable energy intake on visceral organ growth and in vitro oxidative capacity of gut tissues in sheep. Journal of Animal Science 78, 760770.
Mertens, D. R. (1997). Creating a system for meeting the fiber requirements of dairy cows. Journal of Dairy Science 80, 14631481.
Mitsumori, M. & Sun, W. (2008). Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Journal of Animal Science 21, 144154.
Moss, A. R., Jouany, J. P. & Newbold, J. (2000). Methane production by ruminants: its contribution to global warming. Annales De Zootechnie 49, 231253.
Mueller, C. J., Blalock, H. M. & Pritchard, R. H. (2011). Use of soybean hulls as a replacement for dry rolled corn in beef cattle feedlot receiving diets. Journal of Animal Science 89, 41424150.
Owens, F. N., Zinn, R. A. & Kim, Y. K. (1986). Limits to starch digestion in the ruminant small intestine. Journal of Animal Science 63, 16341648.
Owens, F. N., Gill, D. R., Secrist, D. S. & Coleman, S. W. (1995). Review of some aspects of growth and development of feedlot cattle. Journal of Animal Science 73, 31523172.
Parsons, G. L., Shelor, M. K. & Drouillard, J. S. (2009). Performance and carcass traits of finishing heifers fed crude glycerin. Journal of Animal Science 87, 653657.
Pina, D. S., Valadares Filho, S. C., Tedeschi, L. O., Barbosa, A. M. & Valadares, R. F. D. (2009). Influence of different levels of concentrate and ruminally undegraded protein on digestive variables in beef heifers. Journal of Animal Science 87, 10581067.
Pinares-Patiño, C. S., Holmes, C. W., Lassey, K. R. & Ulyatt, M. J. (2008). Measurement of methane emission from sheep by the sulphur hexafluoride tracer technique and by the calorimetric chamber: failure and success. Animal 2, 141148.
Pinares-Patiño, C. S., Lassey, K. R., Martin, R. J., Molano, G., Fernandez, M., Maclean, S., Sandoval, E., Luo, D. & Clark, H. (2011). Assessment of the sulphur hexafluoride (SF6) tracer technique using respiration chambers for estimation of methane emissions from sheep. Animal Feed Science and Technology 166–167, 201209.
Pyatt, N. A., Doane, P. H. & Cecava, M. J. (2007). Effect of crude glycerin in finishing cattle diets. Journal of Animal Science 85 (Suppl.), E409E412.
Quicke, B. V., Bentley, O. G., Scott, H. W., Johnson, R. R. & Moxon, A. L. (1959). Digestibility of soybean hulls and flakes and the in vitro digestibility of cellulose in various milling by-products. Journal of Dairy Science 42, 185186.
Ramos, M. H. & Kerley, M. S. (2012). Effect of dietary crude glycerol level on ruminal fermentation in continuous culture and growth performance of beef calves. Journal of Animal Science 90, 892899.
Roger, V., Fonty, G., Andre, C. & Gouet, P. (1992). Effects of glycerol on the growth, adhesion, and cellulolytic activity of rumen cellulolytic bacteria and anaerobic fungi. Current Microbiology 25, 197–196.
Schoonmaker, J. P., Cecava, M. J., Faulkner, D. B., Fluharty, F. L., Zerby, H. N. & Loerch, S. C. (2003). Effect of source of energy and rate of growth on performance, carcass characteristics, ruminal fermentation, and serum glucose and insulin of early-weaned steers. Journal of Animal Science 81, 843855.
Schroder, A. & Sudekum, K. H. (1999). Glycerol as a by-product of biodiesel production in diets of ruminants. In 10th International Rapeseed Congress (Eds Wratten, N. & Salisbury, P. W.), article number 241. Canberra, Australia, The Regional Institute. Available from: (verified 18 February 2016).
Sharman, E. D., Lancaster, P. A., Krehbiel, C. R., Hilton, G. G., Stein, D. R., Desilva, U. & Horn, G. W. (2013). Effects of starch- vs. fiber-based energy supplements during winter grazing on partitioning of fat among depots and adipose tissue gene expression in growing cattle and final carcass characteristics. Journal of Animal Science 93, 22642277.
Smith, S. B. & Crouse, J. D. (1984). Relative contributions of acetate, lactate and glucose to lipogenesis in bovine intramuscular and subcutaneous adipose tissue. Journal of Nutrition 114, 792800.
Smith, S. B., Kawachi, H., Choi, C. B., Choi, C. W., Wu, G. & Sawyer, J. E. (2009). Cellular regulation of bovine intramuscular adipose tissue development and composition. Journal of Animal Science 8, 7282.
Storm, I. M. L., Hellwing, A. L. F., Nielsen, N. I. & Madsen, J. (2012). Methods for measuring and estimating methane emission from ruminants. Animal 2, 160183.
Valadares Filho, S. C., Paulino, P. V. R. & Magalhães, K. A. (2006). Exigências nutricionais de zebuínos e tabelas de composição de alimentos – BR CORTE. 1st edn, Viçosa, Brazil: UFV, Suprema Gráfica Ltda.
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, and nonstarch polyssacarides in relations to animal nutrition. Journal of Dairy Science 74, 35833597.
Wang, C., Lui, Q., Huo, W. J., Yang, W. Z., Dong, K. H., Huang, X. Y. & Guo, G. (2009). Effects of feeding glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livestock Science 121, 1520.
Westberg, H. H., Johnson, K. A., Cossalman, M. W. & Michal, J. J. (1998). A SF6 Tracer Technique: Methane Measurement from Ruminants, 2nd edn, Pullman, Washington, USA: Washington State University.
Yan, T., Agnew, R. E., Gordon, F. J. & Porter, M. G. (2000). Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livestock Production Science 64, 253263.
Zhang, A. & Yang, S. T. (2009). Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici . Process Biochemistry 44, 13461351.

Methane emissions and growth performance of young Nellore bulls fed crude glycerine- v. fibre-based energy ingredients in low or high concentrate diets

  • J. F. LAGE (a1), E. SAN VITO (a2), R. A. REIS (a2), E. E. DALLANTONIA (a2), L. R. SIMONETTI (a2), I. P. C. CARVALHO (a3), A. BERNDT (a4), M. L. CHIZZOTTI (a5), R. T. S. FRIGUETTO (a6) and T. T. BERCHIELLI (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed