Skip to main content Accessibility help

Methane and nitrous oxide emissions as affected by long-term fertilizer management from double-cropping paddy fields in Southern China

  • H.-M. TANG (a1), X.-P. XIAO (a1), K. WANG (a1), W.-Y. LI (a1), J. LIU (a1) and J.-M. SUN (a1)...


There is limited information about the influences of long-term fertilizer management on methane (CH4) and nitrous oxide (N2O) emissions from double-cropping paddy fields in Southern China. Therefore, the objective of the present study was to characterize the changes of CH4 and N2O related to different fertilizer treatments based on a long-term field experiment. The experiment was initiated in 1986 and consisted of five treatments: unfertilized (CK), mineral fertilizer alone (MF), rice residues plus mineral fertilizer (RF), low manure rate plus mineral fertilizer (M1 + F), and high manure rate plus mineral fertilizer (M2 + F). Investigations were conducted over 2 years, from 2013 to 2014, to examine the CH4 and N2O emissions from paddy field of Southern China. The results indicated that M2 + F plots had the largest CH4 emissions during the early rice and late cropped rice and that MF and RF had larger N2O emissions than CK in both early and late cropped rice. When compared with the control, total N2O emissions in both rice-growing seasons increased in both MF and RF in 2013 and 2014. The global warming potentials (GWP) from paddy fields were ranked as M2 + F > M1 + F > RF > MF > CK. Meanwhile, the results demonstrated that CH4 and N2O emissions were closely associated with the soil redox potential and soil temperature. In summary, the incorporation of rice residues in addition to the use of mineral fertilizer (RF treatment) may be an effective fertilizer management practice for mitigating total GWP per grain yield and maintaining rice grain yield in southern China.


Corresponding author

* To whom all correspondence should be addressed. Email:


Hide All
Akiyama, H. & Tsuruta, H. (2002). Effect of chemical fertilizer form on N2O, NO and NO2 fluxes from Andisol field. Nutrient Cycling in Agroecosystems 63, 219230.
Akiyama, H., Tsuruta, H. & Watanabe, T. (2000). N2O and NO emissions from soils after the application of different chemical fertilizers. Chemosphere – Global Change Science 2, 313320.
Al-Kaisi, M. M. & Yin, X. (2005). Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean rotation. Journal of Environmental Quality 34, 437445.
Amos, B., Arkebauer, T. J. & Doran, J. W. (2005). Soil surface fluxes of greenhouse gases in an irrigated maize-based agroecosystem. Soil Science Society of America Journal 69, 387395.
Bergman, I., Sevensson, B. O. H. & Nilsson, M. (1998). Regulation of methane production in a Swedish acid mire by pH, temperature and substrate. Soil Biology & Biochemistry 30, 729741.
Bhatia, A., Pathak, H., Jain, N., Singh, P. K. & Singh, A. K. (2005). Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains. Atmospheric Environment 39, 69766984.
Bronson, K. F. & Mosier, A. R. (1994). Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors, and urease inhibitors. Biology and Fertility of Soils 17, 263268.
Christensen, S. & Christensen, B. T. (1991). Organic matter available for denitrification in different soil fractions: effect of freeze/thaw cycles and straw disposal. Journal of Soil Science 42, 637647.
Chu, H. Y., Hosen, Y. K. & Yagi, K. Y. (2007). NO, N2O, CH4 and CO2 fluxes in winter barley field of Japanese Andisol as affected by N fertilizer management. Soil Biology & Biochemistry 39, 330339.
Curtin, D., Wang, H., Selles, F., McConkey, B. G. & Campbell, C. A. (2000). Tillage effects on carbon fluxes in continuous wheat and fallow-wheat rotations. Soil Science Society of America Journal 64, 20802086.
Drury, C. F., Reynolds, W. D., Tan, C. S., Welacky, T. W., Calder, W. & McLaughlin, N. B. (2006). Emissions of nitrous oxide and carbon dioxide: influence of tillage type and nitrogen placement depth. Soil Science Society of America Journal 70, 570581.
Du, Z. L., Liu, S. F., Xiao, X. P., Yang, G. L. & Ren, T. S. (2009). Soil physical quality as influenced by long-term fertilizer management under an intensive cropping system. International Journal of Agricultural and Biological Engineering 2, 1927.
Dunfield, P., Knowles, R., Dumont, R. & Moore, T. R. (1993). Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biology & Biochemistry 25, 321326.
Dusenbury, M. P., Engel, R. E., Miller, P. R., Lemke, R. L. & Wallander, R. (2008). Nitrous oxide emissions from a northern Great Plains soil as influenced by nitrogen management and cropping systems. Journal of Environmental Quality 37, 542550.
Groot, T. T., Van Bodegom, P. M., Harren, F. J. M. & Meijer, H. A. J. (2003). Quantification of methane oxidation in the rice rhizosphere using 13C-labelled methane. Biogeochemistry 64, 355372.
Hernandez-Ramirez, G., Brouder, S. M., Smith, D. R. & Van Scoyoc, G. E. (2009). Greenhouse gas fluxes in an eastern corn belt soil: weather, nitrogen source, and rotation. Journal of Environmental Quality 38, 841854.
Hao, X., Chang, C., Carefoot, J. M., Janzen, H. H. & Ellert, B. H. (2001). Nitrous oxide emissions from an irrigated soil as affected by fertilizer and straw management. Nutrient Cycling in Agroecosystems 60, 18.
Hu, R., Hatano, R., Kusa, K. & Sawamoto, T. (2002). Effect of nitrogen fertilization on methane flux in a structured clay soil cultivated with onion in central Hokkaido, Japan. Soil Science and Plant Nutrition 48, 797804.
IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC (Eds. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P. M.). Cambridge, UK and New York, NY: Cambridge University Press.
Kallenbach, C. M., Rolston, D. E. & Horwath, W. R. (2010). Cover cropping affects soil N2O and CO2 emissions differently depending on type of irrigation. Agriculture, Ecosystems & Environment 137, 251260.
Khalil, M. A. K., Rasmussen, R. A., Shearer, M. J., Chen, Z. L., Yao, H. & Yang, J. (1998). Emissions of methane, nitrous oxide, and other trace gases from rice fields in China. Journal of Geophysical Research: Atmospheres 103, 2524125250.
Kudo, Y. K., Noborio, K. K., Shimoozono, N. & Kuriharab, R. K. (2014). The effective water management practice for mitigating greenhouse gas emissions and maintaining rice yield in central Japan. Agriculture, Ecosystems & Environment 186, 7785.
Levy, P. E., Mobbs, D. C., Jones, S. K., Milne, R., Campbell, C. & Sutton, M. A. (2007). Simulation of fluxes of greenhouse gases from European grasslands using the DNDC model. Agriculture, Ecosystems & Environment 121, 186192.
Li, X., Inubushi, K. & Sakamoto, K. (2002). Nitrous oxide concentrations in an Andisol profile and emissions to the atmosphere as influenced by the application of nitrogen fertilizers and manure. Biology and Fertility of Soils 35, 108113.
Liebig, M. A., Tanaka, D. L. & Gross, J. R. (2010). Fallow effects on soil carbon and greenhouse gas flux in central North Dakota. Soil Science Society of America Journal 74, 358365.
Liu, H., Zhao, P., Lu, P., Wang, Y. S., Lin, Y. B. & Rao, X. Q. (2008). Greenhouse gas fluxes from soils of different land-use types in a hilly area of South China. Agriculture, Ecosystems & Environment 124, 125135.
Lokupitiya, E. & Paustian, K. (2006). Agricultural soil greenhouse gas emissions: a review of national inventory methods. Journal of Environmental Quality 35, 14131427.
Ma, J., Xu, H., Yagi, K. & Cai, Z. C. (2008). Methane emission from paddy soils as affected by wheat straw returning mode. Plant and Soil 313, 167174.
Mosier, A. R., Halvorson, A. D., Reule, C. A. & Liu, X. J. (2006). Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. Journal of Environmental Quality 35, 15841598.
Parashar, D. C., Gupta, P. K., Rai, J., Sharma, R. C. & Singh, N. (1993). Effect of soil temperature on methane emission from paddy field. Chemosphere 26, 247250.
Parkin, T. B. & Kaspar, T. C. (2003). Temperature controls on diurnal carbon dioxide flux: Implications for estimating soil carbon loss. Soil Science Society of America Journal 67, 17631772.
Powlson, D. S., Goulding, K. W. T., Willison, T. W., Webster, C. P. & Hutsch, B. W. (1997). The effect of agriculture on methane oxidation in soil. Nutrient Cycling in Agroecosystems 49, 5970.
Robertson, G. P. & Vitousek, P. M. (2009). Nitrogen in agriculture: balancing the cost of an essential resource. Annual Review of Environment and Resources 34, 97125.
Saggar, S., Hedley, C. B., Giltrap, D. L. & Lambie, S. M. (2007). Measured and modelled estimates of nitrous oxide emission and methane consumption from a sheep-grazed pasture. Agriculture, Ecosystems & Environment 122, 357365.
Sainju, U. M., Jabro, J. D. & Stevens, W. B. (2008). Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization. Journal of Environmental Quality 37, 98106.
SAS Institute (2003). SAS Version 9.1·2 2002–2003. Cary: NC, USA: SAS Institute Inc.
Sethunathan, N., Kumaraswamy, S., Rath, A. K., Ramakrishnan, B., Satpathy, S. N., Adhya, T. K. & Rao, V. R. (2000). Methane production, oxidation, and emission from Indian rice soils. Nutrient Cycling in Agroecosystems 58, 377388.
Singh, J. S., Singh, S., Raghubanshi, A. S., Singh, S. & Kashyap, A. K. (1996). Methane flux from rice/wheat agroecosystem as affected by crop phenology, fertilization and water level. Plant and Soil 183, 323327.
Tan, Z., Liu, S., Tieszen, L. L. & Tachie-Obeng, E. (2009). Simulated dynamics of carbon stocks driven by changes in land use, management and climate in a tropical moist ecosystem of Ghana. Agriculture, Ecosystems & Environment 130, 171176.
Tang, H. M., Xiao, X. P., Tang, W. G., Wang, K., Sun, J. M., Li, W. Y. & Yang, G. L. (2014). Effects of winter cover crops straws incorporation on CH4 and N2O emission from double-cropping paddy fields in southern China. PLoS ONE 9, e108322. DOI: 10.1371/journal.pone.0108322
Verge, X. P. C., de Kimpe, C. & Desjardins, R. L. (2007). Agricultural production, greenhouse gas emissions and mitigation potential. Agricultural and Forest Meteorology 142, 255269.
Verma, A., Tyagi, L., Yadav, S. & Singh, S. N. (2006). Temporal changes in N2O efflux from cropped and fallow agricultural fields. Agriculture, Ecosystems & Environment 116, 209215.
Vor, T., Dyckmans, J., Loftfield, N., Beese, F. & Flessa, H. (2003). Aeration effects on CO2, N2O, and CH4 emission and leachate composition of a forest soil. Journal of Plant Nutrition and Soil Science 166, 3945.
Wang, J. Y., Chen, Z. Z., Ma, Y. C., Sun, L. Y., Xiong, Z. Q., Huang, Q. W. & Sheng, Q. R. (2013). Methane and nitrous oxide emissions as affected by organic–inorganic mixed fertilizer from a rice paddy in southeast China. Journal of Soils and Sediments 13, 14081417.
Wassmann, R., Neue, H. U., Ladha, J. K. & Aulakh, M. S. (2004). Mitigating greenhouse gas emissions from rice–wheat cropping systems in Asia. Environment, Development & Sustainability 6, 6590.
Weier, K. L., Doran, J. W., Power, J. F. & Walters, D. T. (1993). Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Science Society of America Journal 57, 6672.
Yagi, K. & Minami, K. (1990). Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Science and Plant Nutrition 36, 599610.
Yan, X., Hosen, Y. & Yagi, K. (2001). Nitrous oxide and nitric oxide emissions from maize field plots as affected by N fertilizer type and application method. Biology and Fertility of Soils 34, 297303.
Yao, Z., Zheng, X., Xie, B., Mei, B., Wang, R., Butterbach-Bahl, K., Zhu, J. & Yin, R. (2009). Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice–wheat rotation. Soil Biology & Biochemistry 41, 21312140.
Yue, J., Shi, Y., Liang, W., Wu, J., Wang, C. R. & Huang, G. H. (2005). Methane and nitrous oxide emissions from rice field and related microorganism in black soil, northeastern China. Nutrient Cycling in Agroecosystems 73, 293301.
Yu, K., Böhme, F., Rinklebe, J., Neue, H. U. & DeLaune, R. D. (2007). Major biogeochemical processes in soils – a microcosm incubation from reducing to oxidizing conditions. Soil Science Society of America Journal 71, 14061417.
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.
Zhu, B., Yi, L. X., Hu, Y. G., Zeng, Z. H., Tang, H. M., Yang, G. L. & Xiao, X. P. (2012). Effects of Chinese Milk Vetch (Astragalus sinicus L.) residue incorporation on CH4 and N2O emission from a double-rice paddy soil. Journal of Integrative Agriculture 11, 15371544.
Zhu, R., Liu, Y., Sun, L. & Xu, H. (2007). Methane emissions from two tundra wetlands in eastern Antarctica. Atmospheric Environment 41, 47114722.
Zona, D., Janssens, I. A., Verlinden, M. S., Broeckx, L. S., Cools, J., Gioli, B., Zaldei, A. & Ceulemans, R. (2011). Impact of extreme precipitation and water table change on N2O fluxed in a bio-energy poplar plantation. Biogeosciences 8, 20572092.

Related content

Powered by UNSILO

Methane and nitrous oxide emissions as affected by long-term fertilizer management from double-cropping paddy fields in Southern China

  • H.-M. TANG (a1), X.-P. XIAO (a1), K. WANG (a1), W.-Y. LI (a1), J. LIU (a1) and J.-M. SUN (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.