Skip to main content Accessibility help

Isolation, purification and identification of the active compound of turmeric and its potential application to control cucumber powdery mildew

  • W. J. Fu (a1), J. Liu (a1), M. Zhang (a1), J. Q. Li (a1), J. F. Hu (a2), L. R. Xu (a1) and G. H. Dai (a1)...


Cucumber powdery mildew is a destructive foliar disease caused by Podosphaera xanthii (formerly known as Sphaerotheca fuliginea) that substantially damages the yield and quality of crops. The control of this disease primarily involves the use of chemical pesticides that cause serious environmental problems. Currently, numerous studies have indicated that some plant extracts or products potentially have the ability to act as natural pesticides to control plant diseases. It has been reported that turmeric (Curcuma longa L.) and its extract can be used in agriculture due to their insecticidal and fungicidal properties. However, the most effective fungicidal component of this plant is still unknown. In the current study, the crude extract of C. longa L. was found to have a fungicidal effect against P. xanthii. Afterwards, eight fractions (Fr.1–Fr.8) were gradually separated from the crude extract by column chromatography. Fraction 1 had the highest fungicidal effect against this pathogen among the eight fractions. The active compound, (+)-(S)-ar-turmerone, was separated from Fr 1 by semi-preparative high-performance liquid chromatography and identified based on its 1H nuclear magnetic resonance (NMR) and 13C NMR spectrum data. The EC50 value of (+)-(S)-ar-turmerone was found to be 28.7 µg/ml. The compound also proved to have a curative effect. This is the first study to report that the compound (+)-(S)-ar-turmerone has an effect on controlling this disease. These results provide a basis for developing a new phytochemical fungicide from C. longa L. extract.


Corresponding author

Author for correspondence: G. H. Dai, E-mail:


Hide All
Ammon, HPT and Wahl, MA (1991) Pharmacology of Curcuma longa. Planta Medica 57, 17.
Aratanechemuge, Y et al. (2002) Selective induction of apoptosis by ar-turmerone isolated from turmeric (Curcuma longa L.) in two human leukemia cell lines, but not in human stomach cancer cell line. International Journal of Molecular Medicine 9, 481484.
Bartlett, DW et al. (2002) The strobilurin fungicides. Pest Management Science 58, 649662.
Bassil, KL et al. (2007) Cancer health effects of pesticides: systematic review. Canadian Family Physician 53, 17041711.
BBCH (Biologische Bundesanstallt für Land-und Forstwirtschaft) (1997) Growth Stages of Mono-and Dicotyledonous Plants: BBCH Monograph. Berlin: Blackwell Wissenschafts-Verlag.
Bergeron, C et al. (1995) Antifungal constituents of Chenopodium procerum. International Journal of Pharmacognosy 33, 115119.
Cantrell, CL, Dayan, FE and Duke, SO (2012) Natural products as sources for new pesticides. Journal of Natural Products 75, 12311242.
Carvalho, PIN et al. (2015) Techno-economic evaluation of the extraction of turmeric (Curcuma longa L.) oil and ar-turmerone using supercritical carbon dioxide. Journal of Supercritical Fluids 105, 4454.
Chander, H and Kulkarni, SG (1992) Studies on turmeric and mustard oil as protectants against infestation of red flour beetle, Tribolium castaneum (Herbst.) in stored milled rice. Journal of Insect Science 5, 220222.
Chowdhury, H, Walia, S and Saxena, VS (2000) Isolation, characterization and insect growth inhibitory activity of major turmeric constituents and their derivatives against Schistocerca gregaria (Forsk) and Dysdercus koenigii (Walk). Pest Management Science 56, 10861092.
Clough, JM (2000) The strobilurin fungicides – from mushroom to molecule to market. In Wrigley, SK, Hayes, MA, Thomas, R, Chrystal, EJT and Nicholson, N (eds), Biodiversity: New Leads for the Pharmaceutical and Agrochemical Industries. Cambridge, UK: Royal Society of Chemistry, pp. 277282.
Daayf, F, Schmitt, A and Belanger, RR (1995) The effects of plant extracts of Reynoutria sachalinensis on powdery mildew development and leaf physiology of long English cucumber. Plant Disease 79, 577580.
Dik, AJ and van der Staay, M (1995) The effect of Milsana on cucumber powdery mildew under Dutch conditions. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent 59, 10271034.
Duan, Y et al. (2013) Effect of phenylpyrrole fungicide fludioxonil on morphological and physiological characteristics of Sclerotinia sclerotiorum. Pesticide Biochemistry & Physiology 106, 6167.
Duan, S et al. (2016) Chemical basis of the fungicidal activity of tobacco extracts against Valsa mali. Molecules 21, 1743.
Ferreira, LA et al. (1992) Biologically active peptides from Bothrops jararacussu venom. Agents & Actions Supplements 36, 209214.
Fujiwara, M et al. (2011) Biotransformation of turmerones by Aspergillus niger. Journal of Natural Products 74, 8689.
Fukino, N et al. (2013) Identification and validation of powdery mildew (Podosphaera xanthii)-resistant loci in recombinant inbred lines of cucumber (Cucumis sativus L.). Molecular Breeding 32, 267277.
Gafni, A et al. (2015) Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action. Frontiers in Plant Science 6, 132.
Gilardi, G et al. (2008) Efficacy of the biocontrol agents Bacillus subtilis and Ampelomyces quisqualis applied in combination with fungicides against powdery mildew of zucchini. Journal of Plant Diseases & Protection 115, 208213.
Grieco, PA and Finkelhor, RS (1973) Dianions of .beta.-ketophosphonates. Two-step synthesis of (+)-ar-turmerone. Journal of Organic Chemistry 38, 29092910.
Hanke, W and Jurewicz, J (2004) The risk of adverse reproductive and developmental disorders due to occupational pesticide exposure: an overview of current epidemiological evidence. International Journal of Occupational Medicine & Environmental Health 17, 223243.
Herger, G and Klingauf, F (1990) Control of powdery mildew fungi with extracts of the giant knotweed, Reynoutria sachalinensis (Polygonaceae). Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent 55, 10071014.
Hernández, AF et al. (2011) Emerging human health concerns from chronic exposure to pesticide mixtures. Toxicology Letters 205, S4S5.
Horsfield, A et al. (2010) Effect of fungicide use strategies on the control of early blight (Alternaria solani) and potato yield. Australasian Plant Pathology 39, 368375.
Jilani, G and Saxena, RC (1990) Repellent and feeding deterrent effects of turmeric oil, sweetflag oil, neem oil, and a neem-based insecticide against lesser grain borer (Coleoptera: Bostrychidae). Journal of Economic Entomology 83, 629634.
Kanavouras, K et al. (2011) A case report of motor neuron disease in a patient showing significant level of DDTs, HCHs and organophosphate metabolites in hair as well as levels of hexane and toluene in blood. Toxicology & Applied Pharmacology 256, 399404.
Kavková, M and Curn, V (2005) Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) as a potential mycoparasite on Sphaerotheca fuliginea (Ascomycotina: Erysiphales). Mycopathologia 159, 5363.
Kim, MK, Choi, GJ and Lee, HS (2003) Fungicidal property of Curcuma longa L. rhizome-derived curcumin against phytopathogenic fungi in a greenhouse. Journal of Agricultural & Food Chemistry 51, 15781581.
Kiss, L et al. (2010) Microcyclic conidiogenesis in powdery mildews and its association with intracellular parasitism by Ampelomyces. European Journal of Plant Pathology 126, 445451.
Konstantinidou-Doltsinis, S and Schmitt, A (1998) Impact of treatment with plant extracts from Reynoutria sachalinensis (F. Schmidt) Nakai on intensity of powdery mildew severity and yield in cucumber under high disease pressure. Crop Protection 17, 649656.
London, L et al. (2012) Neurobehavioral and neurodevelopmental effects of pesticide exposures. NeuroToxicology 33, 887896.
Ma, Q et al. (2005) Effect of oligosaccharide on the resistance induction of cucumber against Sphaerotheca fuliginea. Journal of Northwest Sci-Tech University of Agriculture and Forestry 33, 7981.
Nave, S et al. (2010) Protodeboronation of tertiary boronic esters: asymmetric synthesis of tertiary alkyl stereogenic centers. Journal of the American Chemical Society 132, 1709617098.
Pang, Q et al. (2015) Effects of turmeric root extract on the control of cucumber powdery mildew. China Plant Protection 35, 6366.
Parrón, T et al. (2011) Association between environmental exposure to pesticides and neurodegenerative diseases. Toxicology & Applied Pharmacology 256, 379385.
Petsikos-Panayotarou, N et al. (2002) Management of cucumber powdery mildew by new formulations of Reynoutria sachalinensis (F. Schmidt) Nakai extract. Zeitschrift Für Pflanzenkrankheiten Und Pflanzenschutz 109, 478490.
Pfender, WF (2006) Interaction of fungicide physical modes of action and plant phenology in control of stem rust of perennial ryegrass grown for seed. Plant Disease 90, 12251232.
Romero, D et al. (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions 20, 430440.
Rowe, BJ and Spilling, CD (2003) Stereospecific Pd (0)-catalyzed arylation of an allylic hydroxy phosphonate derivative: formal synthesis of (S)-(+)-ar-turmerone. The Journal of Organic Chemistry 68, 95029505.
Sakugawa, H et al. (2012) Protective and curative effects of foliar-spray Fenton solutions against cucumber (Cucumis sativus, L.) powdery mildew. Journal of Environmental Science & Health Part A Toxic/Hazardous Substances & Environmental Engineering 47, 19091918.
Sauter, H, Steglich, W and Anke, T (1999) Strobilurins: evolution of a new class of active substances. Angewandte Chemie International Edition 38, 13281349.
Su, HCF, Horvat, R and Jilani, G (1982) Isolation, purification, and characterization of insect repellents from Curcuma longa L. Journal of Agricultural & Food Chemistry 30, 290292.
Tang, R, Wang, X and Zhang, X (2005) Extract and compound analysis of activity fractions against powdery mildew of cucumber from Rheum palmatum. Journal of Anhui Agricultural University 32, 441443.
Tripathi, P and Dubey, NK (2004) Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology & Technology 32, 235245.
Varo, A et al. (2017) Screening water extracts and essential oils from Mediterranean plants against Verticillium dahliae in olive. Crop Protection 92, 168175.
Wurms, K et al. (1999) Effects of milsana and benzothiadiazole on the ultrastructure of powdery mildew haustoria on cucumber. Phytopathology 89, 728736.
Zaker, M (2016) Natural plant products as eco-friendly fungicides for plant diseases control – a review. The Agriculturists 14, 134141.
Zhang, ZY et al. (2008) Protective effect of Robinia pseudoacacia Linn1 extracts against cucumber powdery mildew fungus, Sphaerotheca fuliginea. Crop Protection 27, 920925.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed