Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-20T02:25:59.500Z Has data issue: false hasContentIssue false

Innovation and productivity in dryland agriculture: a return-risk analysis for Australia

Published online by Cambridge University Press:  22 December 2010

P. S. CARBERRY
Affiliation:
CSIRO Sustainable Agriculture Flagship, 306 Carmody Road, St Lucia, QLD 4067, Australia
S. E. BRUCE*
Affiliation:
Australian Bureau of Agricultural and Resource Economics – Bureau of Rural Sciences, GPO Box 858, Canberra, ACT 2601, Australia
J. J. WALCOTT
Affiliation:
Australian Bureau of Agricultural and Resource Economics – Bureau of Rural Sciences, GPO Box 858, Canberra, ACT 2601, Australia
B. A. KEATING
Affiliation:
CSIRO Sustainable Agriculture Flagship, 306 Carmody Road, St Lucia, QLD 4067, Australia
*
*To whom all correspondence should be addressed. Email: sarah.bruce@abare-brs.gov.au

Summary

Despite a highly variable climate and fragile soils, dryland farming systems in Australia continue to be productive and viable. This review nominates the farming practices, and their development through investment in science and technology, that have helped sustain dryland farming systems in Australia. It sets the context for dryland agriculture in Australia and specifically examines the risks and returns from technological innovations over the past 30 years. It then examines possible sources of productivity gains in the next 20 years.

Australian dryland farming systems have performed favourably compared to the agricultural sectors in most other countries over the past 30 years. Australian Research, Development and Extension (RD&E) has been a significant contributor to the realized agricultural productivity growth over this period. However, growth in the productivity of agriculture appears to have slowed down in the last 10 years: this is partly a result of extended dry conditions and declining growth in public investment in RD&E. It is reflected in slowing rates of technology adoption on broadacre farms and changes in investment confidence of farm owners.

Future productivity gains will require continued strong investment in RD&E to meet current and emerging challenges. Future technologies and policies will help improve productivity by removing inefficiencies, increasing the efficiency of resource use and developing breakthrough innovations.

As evidenced by Australia's success in productivity growth, meeting the global challenge to produce more food in the future will depend partly on investments in RD&E, risk management systems, farmer skill and human capital and policies that encourage efficiency gains.

Type
Foresight Project on Global Food and Farming Futures
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abadi Ghadim, A. K., Pannell, D. J. & Burton, M. P. (2005). Risk, uncertainty, and learning in adoption of a crop innovation. Agricultural Economics 33(1), 19.CrossRefGoogle Scholar
ABARE (2009 a). Australian Commodity Statistics 2009. Canberra: Australian Bureau of Agricultural and Resource Economics.Google Scholar
ABARE (2009 b). Australian Grains 09·1. Canberra: Australian Bureau of Agricultural and Resource Economics.Google Scholar
Alston, J. M., Beddow, J. M. & Pardey, P. G. (2009). Agricultural research, productivity, and food prices in the long run. Science 325, 12091210.CrossRefGoogle ScholarPubMed
Anderson, J. R., Dillon, J. L. & Hardaker, J. B. (1977). Agricultural Decision Analysis. Ames, IA: Iowa State University Press.Google Scholar
Anderson, W. K. (2010). Closing the gap between actual and potential yield of rainfed wheat. The impacts of environment, management and cultivar. Field Crops Research 116(1), 1422.CrossRefGoogle Scholar
Angus, J. F. (2001). Nitrogen supply and demand in Australian agriculture. Australian Journal of Experimental Agriculture 41, 277288.CrossRefGoogle Scholar
Angus, J. & van Herwaarden, A. F. (2001). Increasing water use and water use efficiency in dryland wheat. Agronomy Journal 93, 290298.CrossRefGoogle Scholar
Asner, G. P., Elmore, A. J., Olander, L. P., Martin, R. E. & Harris, A. T. (2004). Grazing systems, ecosystem responses, and global change. Annual Review of Environment and Resources 29, 261299.CrossRefGoogle Scholar
Bariana, H. S., Brown, G. N., Bansal, U. K., Miah, H., Standen, G. E. & Lu, M. (2007). Breeding triple rust resistant wheat cultivars for Australia using conventional and marker-assisted selection technologies. Australian Journal of Agricultural Research 58, 576587.CrossRefGoogle Scholar
Bell, L. W., Robertson, M. J., Revell, D. K., Lilley, J. M. & Moore, A. D. (2008). Approaches for assessing some attributes of feed-base systems in mixed farming enterprises. Australian Journal of Experimental Agriculture 48, 789798.CrossRefGoogle Scholar
Bell, L. W., Wade, L. J. & Ewing, M. A. (2010). Perennial wheat: a review of environmental and agronomic prospects for development in Australia. Crop and Pasture Science 61, 679690.CrossRefGoogle Scholar
Bolger, T. P. & Turner, N. C. (1999). Water use efficiency and water use of Mediterranean annual pastures in southern Australia. Australian Journal of Agricultural Research 50, 10351046.CrossRefGoogle Scholar
Bramley, R. G. V. (2009). Lessons from nearly 20 years of precision agriculture research. Crop and Pasture Science 60, 197217.CrossRefGoogle Scholar
Brookes, G. & Barfoot, P. (2005). GM crops: the global economic and environmental impact – the first nine years 1996–2004. AgBioForum 8, 187196.Google Scholar
BRS (2001). 1996/97 Land Use of Australia, version 2. Digital map, ArcInfo grid format. Canberra: Bureau of Rural Sciences.Google Scholar
BRS (2006). Land Use of Australia, version 3, 2001/02. Digital map, ArcInfo grid format. Canberra: Bureau of Rural Sciences.Google Scholar
BRS (2010). Land use of Australia, version 4, 2005–06. Digital map, ArcInfo grid format. Canberra: Australian Bureau of Agricultural and Resource Economics – Bureau of Rural Sciences.Google Scholar
Bruce, S., Sims, J., Walcott, J., White, S., Baldock, J., Grace, P. & Wicks, S. (2010). Soil Carbon Management and Carbon Trading. Canberra: Bureau of Rural Sciences, Department of Agriculture, Fisheries and Forestry.Google Scholar
Carberry, P. (2001). Are science rigour and industry relevance both acheivable in participatory action research? Agricultural Science 14, 2228.Google Scholar
Carberry, P. S., Chapman, A. L., Anderson, C. M. & Muir, L. L. (1996). Conservation tillage and ley farming systems in the Australian semi-arid tropics. Australian Journal of Experimental Agriculture 36, 9151089.Google Scholar
Carberry, P. S., Hammer, G. L., Meinke, H. & Bange, M. (2000). The potential value of seasonal forecasting in managing cropping systems. In Application of Seasonal Climate Forecasting in Agricultural and Natural Systems – the Australian Experience (Eds Hammer, G. L., Nicholls, N. & Mitchell, C.), pp. 167181. Dordrecht: Kluwer Academic Publishers.Google Scholar
Carberry, P. S., Hochman, Z., Hunt, J. R., Dalgliesh, N. P., McCown, R. L., Whish, J. P. M., Robertson, M. J., Foale, M. A., Poulton, P. L. & van Rees, H. (2009). Re-inventing model-based decision support with Australian dryland farmers: 3. Relevance of APSIM to commercial crops. Crop and Pasture Science 60, 10441056.CrossRefGoogle Scholar
Carberry, P. S., Hochman, Z., McCown, R. L., Dalgliesh, N. P., Foale, M. A., Poulton, P. L., Hargreaves, J. N. G., Hargreaves, D. M. G., Cawthrey, S., Hillcoat, N. & Robertson, M. J. (2002). The FARMSCAPE approach to decision support: farmers’, advisers’, researchers’ monitoring, simulation, communication, and performance evaluation. Agricultural Systems 74, 141177.CrossRefGoogle Scholar
Christopher, J. T., Manschadi, A. M., Hammer, G. L. & Borrell, A. K. (2008). Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Australian Journal Agricultural Research 59, 354364.CrossRefGoogle Scholar
Conner, D. J. (2004). Designing cropping systems for efficient use of limited water in southern Australia. European Journal of Agronomy 21, 419431.CrossRefGoogle Scholar
CSIRO (2008). Water Availability in the Murray-Darling Basin. A report from CSIRO to the Australian Government. Collingwood, Victoria, Australia: CSIRO.Google Scholar
D'Emden, F. H., Llewellyn, R. S. & Burton, M. P. (2006). Adoption of conservation tillage in Australian cropping regions: an application of duration analysis. Technological Forecasting and Social Change 73, 630647.CrossRefGoogle Scholar
Descheemaeker, K., Amede, T. & Haileslassie, A. (2009). Livestock and Water Interactions in Mixed Crop-Livestock Farming Systems of Sub-Saharan Africa: Interventions for Improved Productivity. IWMI Working Paper 133. Colombo, Sri Lanka: International Water Management Institute.Google Scholar
Dillon, J. L. (1977). An Analysis of Response in Crop and Livestock Production (2nd edn). Oxford, UK: Pergamon.Google Scholar
Doherty, A., Sadras, V. O., Rodriguez, D. & Potgieter, A. (2010). Quantification of wheat water-use efficiency at the shire-level in Australia. Crop and Pasture Science 61(1), 111.CrossRefGoogle Scholar
Eagles, H. A., Cane, K., Kuchef, H., Hollamby, G. J., Vallance, N., Eastwood, R. F., Gororo, N. N. & Martin, P. J. (2010). Photoperiod and vernalization gene effects in southern Australian wheat. Crop and Pasture Science 61, 721730.CrossRefGoogle Scholar
FAO (2009). Global Agriculture Towards 2050. Rome: FAO.Google Scholar
Fischer, R. A. (2009). Farming systems of Australia: exploiting the synergy between genetic improvement and agronomy. In Crop Physiology: Applications for Genetic Improvement and Agronomy (Eds Sadras, V. O. & Calderini, D. F.), pp. 2354. New York: Academic Press.Google Scholar
Fischer, R. A., Byerlee, D. & Edmeades, G. O. (2009). Can Technology Deliver on the Yield Challenge to 2050? Paper presented as part of the Expert Meeting on How to Feed the World in 2050. Rome: FAO.Google Scholar
Fischer, R. A. & Edmeades, G. O. (2010). Breeding and cereal yield progress. Crop Science 50 (Suppl. 1), S85S98.CrossRefGoogle Scholar
Freebairn, D. M., Cornish, P. S., Anderson, W. K., Walker, S. R., Robinson, J. B. & Beswick, A. R. (2006). Management systems in climate regions of the world-Australia. In Dryland Agriculture. 2nd edn (Eds Peterson, G. A., Unger, P. W. & Payne, W. A.), pp. 837878. Madison, WI: ASA, CSSA, SSSA.Google Scholar
French, R. J. (1991). Monitoring the functioning of dryland farming systems. In Dryland Farming: a Systems Approach (Eds Squires, V. & Tow, P. G.), pp. 222228. North Melbourne: Sydney University Press.Google Scholar
French, R. J. & Schultz, J. E. (1984). Water use efficiency of wheat in a Mediterranean-type environment. II some limitations to efficiency. Australian Journal Agricultural Research 35, 765775.CrossRefGoogle Scholar
Furbank, R. T., von Caemmerer, S., Sheehy, J. & Edwards, G. (2009). C4 rice: a challenge for plant phenomics. Functional Plant Biology 36, 845856.CrossRefGoogle Scholar
Hajkowicz, S. (2009). The evolution of Australia's natural resource management programs: towards improving targeting and evaluation of investments. Land Use Policy 26, 471478.CrossRefGoogle Scholar
Hamblin, A. (2009). Policy directions for agricultural land use in Australia and other post-industrial economies. Land Use Policy 26, 11951204.CrossRefGoogle Scholar
Hamblin, A. & Kyneur, G. (1993). Trends in Wheat Yields and Soil Fertility in Australia. Canberra: Bureau of Resource Sciences, Australian Government Publishing Service.Google Scholar
Hammer, G., Cooper, M., Tardieu, F., Welch, S., Walsh, B., van Eeuwijk, F., Chapman, S. & Podlich, D. (2006). Models for navigating biological complexity in breeding improved crop plants. Trends in Plant Science 11(12), 587593.CrossRefGoogle ScholarPubMed
Hammer, G. L. & Jordan, D. R. (2007). An integrated systems approach to crop improvement. In Scale and Complexity in Plant Systems Research: Gene-Plant-Crop Relations (Eds Spiertz, J. H. J., Struik, P. C. & van Laar, H. H.), pp. 4561. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
Hammer, G. L., Nicholls, N. & Mitchell, C. (Eds) (2000). Application of Seasonal Climate Forecasting in Agricultural and Natural Ecosystems – the Australian Experience. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
Hattersley, P., Johnson, H., Glover, J., Foster, M., Wesley, V. & Mewwett, O. (2009). Plant gene technology: improving the productivity of Australian agriculture. In Science for Decision Makers. Canberra: Bureau of Rural Sciences.Google Scholar
Higgins, A., Thorburn, P., Archer, A. & Jakku, E. (2007). Opportunities for value chain research in sugar industries. Agricultural Systems 94, 611621.CrossRefGoogle Scholar
Hochman, Z., Holzworth, D. & Hunt, J. R. (2009 a). Potential to improve on-farm wheat yield and WUE in Australia. Crop and Pasture Science 60, 708716.CrossRefGoogle Scholar
Hochman, Z., Van Rees, H., Carberry, P. S., Hunt, J. R., McCown, R. L., Gartman, A., Holzworth, D., van Rees, S., Dalgliesh, N. P., Long, W., Peake, A. S., Poulton, P. L. & McClelland, T. (2009 b). Re-inventing model-based decision support with Australian dryland farmers:4. Yield Prophet® helps farmers monitor and manage crops in a variable climate. Crop and Pasture Science 60, 10571070.CrossRefGoogle Scholar
Hubert, B., Rosegrant, M. W., van Boekel, M. A. J. S. & Ortiz, R. (2010). The future of food: scenarios for 2050. Crop Science 50, S-33–S-50.CrossRefGoogle Scholar
Hutchinson, M. F., Nix, H. A. & McMahon, J. P. (1992). Climate constraints on cropping systems. In Ecosystems of the World: Field Crop Ecosystems, vol. 18 (Eds Pearson, C. J. & Goodall, D. W.), pp. 3758. Amsterdam: Elsevier.Google Scholar
Keating, B. A. & Carberry, P. S. (2010). Emerging opportunities and challenges for Australian broadacre agriculture. Crop and Pasture Science 61, 269278.CrossRefGoogle Scholar
Keating, B. A., Godwin, D. C. & Watiki, J. M. (1991). Optimising nitrogen inputs in response to climate. In Climatic Risk in Crop Production: Models and Management for the Semiarid Tropics and Subtropics (Eds Muchow, R. C. & Bellamy, J. A.), pp. 329358. Wallingford, UK: CAB International.Google Scholar
Keating, B. A., Carberry, P. S., Bindraban, P. S., Asseng, S., Meinke, H. & Dixon, J. (2010). Eco-efficient agriculture:concepts, challenges and opportunities. Crop Science 50 (Suppl. 1), S109S119.CrossRefGoogle Scholar
Kingwell, R. & Pannell, D. (2005). Economic trends and drivers affecting the wheatbelt for Western Australia to 2030. Australian Journal Agricultural Research 59, 553561.CrossRefGoogle Scholar
Kirkegaard, J. A., Peoples, M. B., Angus, J. F. & Unkovich, M. J. (in press). Diversity and evolution of rainfed farming systems in southern Australia. In Rainfed Farming Systems (Eds Tow, P. G., Cooper, I., Partridge, I. & Birch, C.). Dordrecht: Springer.Google Scholar
Kirkegaard, J. A., Sprague, S. J., Dove, H., Kelman, W. M., Marcroft, S. J., Lieschke, A., Howe, G. N. & Graham, J. M. (2008). Dual-purpose canola – a new opportunity in mixed farming systems. Australian Journal of Agricultural Research 59, 291302.CrossRefGoogle Scholar
Laughlin, G. P., Zuo, H., Walcott, J. & Bugg, A. L. (2003). The rainfall reliability wizard – a new tool to rapidly analyse spatial rainfall reliability with examples. Environmental Modelling and Software 18(1), 4957.CrossRefGoogle Scholar
Lobell, D. B., Cassman, K. G. & Field, C. B. (2009). Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources 34, 179204.CrossRefGoogle Scholar
Mallawaarachchi, T., Walcott, J., Hughes, N., Gooday, P., Georgeson, L. & Foster, A. (2009). Promoting Productivity in the Agriculture and Food Sector Value Chain: Issues for R&D Investment. ABARE and BRS report to the Rural R&D Council. Canberra: ABARE.Google Scholar
Manschadi, A. M., Hammer, G. L., Christopher, J. T. & DeVoil, P. (2008). Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant and Soil 303, 115129.CrossRefGoogle Scholar
Marsh, S. & Pannell, D. (1998). The changing relationship between private and public sector agricultural extension in Australia. Rural Society 8, 133151.CrossRefGoogle Scholar
McKeon, G. M., Stone, G. S., Syktus, J. I., Carter, J. O., Flood, N. R., Ahrens, D. G., Bruget, D. N., Chilcott, C. R., Cobon, D. H., Cowley, R. A., Crimp, S. J., Fraser, G. W., Howden, S. M., Johnston, P. W., Ryan, J. G., Stokes, C. J. & Day, K. A. (2009). Climate change impacts on northern Australian rangeland livestock carrying capacity: a review of issues. The Rangeland Journal 31, 129.CrossRefGoogle Scholar
McLaren, C. G., Metz, T., van den Berg, M., Bruskiewich, R. M., Magor, N. P. & Shires, D. (2009). Informatics in agricultural research for development. Advances in Agronomy 102, 135157.CrossRefGoogle Scholar
Millar, G. D., Jones, R. E., Michalk, D. L. & Brady, S. (2009). An exploratory tool for analysis of forage and livestock production options. Animal Production Science 49, 788796.CrossRefGoogle Scholar
Moore, A. D., Bell, L. W. & Revell, D. K. (2009). Feed gaps in mixed-farming systems: insights from the Grain & Graze program. Animal Production Science 49, 736748.CrossRefGoogle Scholar
Morgan, J. M. (2000). Increases in grain yield of wheat by breeding for an osmoregulation gene: relationship to water supply and evaporative demand. Australian Journal Agricultural Research 51, 971978.CrossRefGoogle Scholar
Mullen, J. D. (2007). Productivity growth and the returns from public investment in R&D in Australian broadacre agriculture. Australian Journal of Agricultural and Resource Economics 51(4), 359384.CrossRefGoogle Scholar
NLWRA (2001). Australian Agriculture Assessment 2001: a Report of the National Land and Water Resources Audit. Canberra: Commonwealth of Australia.Google Scholar
Nossal, K. & Sheng, Y. (2010). Productivity growth: trends, drivers and opportunities for broadacre and dairy industries. Australian Commodities 17, 216230.Google Scholar
OECD (2004). OECD Agricultural Policies 2004: at a Glance. Paris, France: OECD.Google Scholar
Owen, M. J. & Powles, S. B. (2010). Glyphosate-resistant rigid ryegrass (Lolim rigidum) populations in the Western Australian grain belt. Weed Technology 24, 4449.CrossRefGoogle Scholar
Pardey, P. G. (2010). Reassessing public–private roles in agricultural R&D for economic development. In World Food Security: Can Private Sector R&D Feed the Poor? The Crawford Fund Fifteenth Annual International Conference, Parliament House, Canberra 27–28 October 2009 (Ed. Brown, A. G.), pp. 1323. Deakin, ACT, Australia: The Crawford Fund.Google Scholar
Passioura, J. B. (2005). Epilogue: from propaganda to practicalities – the progressive evolution of the salinity debate. Australian Journal of Experimental Agriculture 45, 15031506.CrossRefGoogle Scholar
Passioura, J. B. (2006). Increasing crop productivity when water is scarce-from breeding to field management. Agricultural Water Management 80, 176196.CrossRefGoogle Scholar
Passioura, J. B. & Ridley, A. M. (1998). Managing soil water and nitrogen to minimise land degradation. In Agronomy, Growing a Greener Future? Proceedings of the 9th Australian Agronomy Conference 20–23 July 1998 (Eds Michalk, D. L. & Pratley, J. E.), pp. 99106. Wagga Wagga, Australia: Australian Society of Agronomy.Google Scholar
Pearson, C. J., Zuo, H., Valentine, I. & Unkovich, M. (2003). Sustainability of grazing systems: feed base, grazing pressure and variability. International Journal of Agricultural Sustainability 1, 95107.CrossRefGoogle Scholar
Perry, M. W. (1989). Farming systems of southern Australia. In Agronomy in a Mediterranean Environment. Proceedings of the 5th Australian Agronomy Conference, 30 January – 2 February 1990. pp. 167179. Perth, Western Australia: Australian Society of Agronomy.Google Scholar
Pratley, J. E. & Leigh, R. (2008). Agriculture in decline at Australian universities. In Global Issues. Paddock Action. Proceedings of the 14th Australian Agronomy Conference, 21–25 September 2008 (Ed Unkovich, M.), Adelaide, South Australia: Australian Society of Agronomy. Available online at: http://www.regional.org.au/au/asa/2008/concurrent/agronomy-profession/5953_pratleyj.htm#TopOfPage (verified 21 October 2010).Google Scholar
Rebetzke, G. J., Condon, A. G., Farquhar, G. D., Appels, R. & Richards, R. A. (2008). Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations. Theoretical and Applied Genetics 118, 123137.CrossRefGoogle ScholarPubMed
Richards, R. A. (2006). Physiological traits used in the breeding of new cultivars for water-scarce environments. Agricultural Water Management 80, 197211.CrossRefGoogle Scholar
Richards, R. A., Rebetzke, G. J., Condon, A. G. & van Herwaarden, A. F. (2002). Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Science 42, 111121.CrossRefGoogle ScholarPubMed
Roberts, A. M., Helmers, M. J. & Fillery, I. R. P. (2009). The adoptability of perennial-based farming systems for hydrologic and salinity control in dryland farming systems in Australia and the United States of America. Crop and Pasture Science 60, 8399.CrossRefGoogle Scholar
Robertson, M., Carberry, P. & Brennan, L. (2009). Economic benefits of variable rate technology: case studies from Australian grain farms. Crop and Pasture Science 60, 799807.CrossRefGoogle Scholar
Safriel, U., Adeel, Z., Niemeijer, D., Puigdefabregas, J., White, R., Lal, R., Winslow, M., Ziedler, J., Prince, S., Archer, E., King, C., Shapiro, B., Wessels, K., Nielsen, T., Portnov, B., Reshef, I., Thonnell, J., Lachman, E. & McNab, D. (2005). Dryland systems. In Ecosystems and Human Well-being: Current State and Trends. Findings of the Condition and Trends Working Group (Eds Hassan, R., Scholes, R. & Ash, N.), pp. 623662. Washington, DC: Island Press.Google Scholar
Squires, V. & Tow, P. G. (Eds) (1991). Dryland Farming: a Systems Approach (An Analysis of Dryland Agriculture in Australia). Sydney: Sydney University Press.Google Scholar
Steffen, W., Sims, J. & Walcott, J. (2006). Farming Profitably in a Changing Climate: A Risk-management Approach. Canberra: Bureau of Rural Sciences.Google Scholar
Stokes, C. J. & Howden, S. M. (2010). Adapting Agriculture to Climate Change: Preparing Australian Agriculture, Forestry and Fisheries for the Future. Melbourne: CSIRO Publishing.CrossRefGoogle Scholar
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature 418, 671677.CrossRefGoogle ScholarPubMed
Torsvik, V. & Øvreås, L. (2002). Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology 5, 240245.CrossRefGoogle ScholarPubMed
Tow, P. G., Cooper, I., Partridge, I. & Birch, C. (in press). Rainfed Farming Systems. Dordrecht: Springer.CrossRefGoogle Scholar
Walcott, J., Beeston, G., Stephens, D., Nunweek, M. & Ranatunga, K. (2006). Growing more grain: a first cut at estimating and locating potential gains. In Ground-Breaking Stuff: Proceedings of the 13th Australian Agronomy Conference (Eds Turner, N. C., Acuna, T. & Johnson, R. C.), Perth, Australia: The Regional Institute Ltd, for the Australian Society of Agronomy. Available online at: http://www.regional.org.au/au/asa/2006/poster/systems/4656_walcottj.htm (verified 21 October 2010).Google Scholar
Wark, T., Corke, P., Sikka, P., Klingbeil, L., Guo, Y., Crossman, C., Valencia, P., Swain, D. & Bishop-Hurley, G. (2007). Transforming agriculture through pervasive wireless sensor networks. IEEE Pervasive Computing 6, 5057.CrossRefGoogle Scholar
White, D. H. (1987). Stocking rate. In Managed Grasslands B. Analytical Studies (Ed. Snaydon, R. W.), pp. 227238. Amsterdam: Elsevier.Google Scholar
Williams, R. T. & Walcott, J. J. (1998). Environmental benchmarks for agriculture? Clarifying the framework in a federal system – Australia. Land Use Policy 15, 149163.CrossRefGoogle Scholar
Zhu, X.-G., Long, S. P. & Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology 61, 235261.CrossRefGoogle ScholarPubMed