Skip to main content Accessibility help

Improving the estimation and partitioning of plant nitrogen in the RiceGrow model

  • L. Tang (a1), R. J. Chang (a1), B. Basso (a2), T. Li (a3), F. X. Zhen (a1), L. L. Liu (a1), W. X. Cao (a1) and Y. Zhu (a1)...


Plant nitrogen (N) links with many physiological progresses of crop growth and yield formation. Accurate simulation is key to predict crop growth and yield correctly. The aim of the current study was to improve the estimation of N uptake and translocation processes in the whole rice plant as well as within plant organs in the RiceGrow model by using plant and organ maximum, critical and minimum N dilution curves. The maximum and critical N (Nc) demand (obtained from the maximum and critical curves) of shoot and root and Nc demand of organs (leaf, stem and panicle) are calculated by N concentration and biomass. Nitrogen distribution among organs is computed differently pre- and post-anthesis. Pre-anthesis distribution is determined by maximum N demand with no priority among organs. In post-anthesis distribution, panicle demands are met first and then the remaining N is allocated to other organs without priority. The amount of plant N uptake depends on plant N demand and N supplied by the soil. Calibration and validation of the established model were performed on field experiments conducted in China and the Philippines with varied N rates and N split applications; results showed that this improved model can simulate the processes of N uptake and translocation well.


Corresponding author

Author for correspondence: Y. Zhu, E-mail:


Hide All
Ata-Ul-Karim, ST, Yao, X, Liu, XJ, Cao, WX and Zhu, Y (2013) Development of critical nitrogen dilution curve of Japonica rice in Yangtze River Reaches. Field Crops Research 149, 149158.
Ata-Ul-Karim, ST, Yao, X, Liu, X, Cao, W and Zhu, Y (2014) Determination of critical nitrogen dilution curve based on stem dry matter in rice. PLoS One 9, e104540.
Bélanger, G, Walsh, JR, Richards, JE, Milburn, PH and Ziadi, N (2001) Critical nitrogen curve and nitrogen nutrition index for potato in eastern Canada. American Journal of Potato Research 78, 355364.
Bouman, BAM and Van Laar, HH (2006) Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems 87, 249273.
Brisson, N, Mary, B, Ripoche, D, Jeuffroy, MH, Ruget, F, Nicoullaud, B, Gate, P, Devienne-Barret, F, Antonioletti, R, Durr, C, Richard, G, Beaudoin, N, Recous, S, Tayot, X, Plenet, D, Cellier, P, Machet, JM, Meynard, JM and Delécolle, R (1998) STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 18, 311346.
Colnenne, C, Meynard, JM, Reau, R, Justes, E and Merrien, A (1998) Determination of a critical nitrogen dilution curve for winter oilseed rape. Annals of Botany 81, 311317.
Confalonieri, R, Debellini, C, Pirondini, M, Possenti, P, Bergamini, L, Barlassina, G, Bartoli, A, Agostoni, EG, Appiani, M, Babazadeh, L, Bedin, E, Bignotti, A, Bouca, M, Bulgari, R, Cantore, A, Degradi, D, Facchinetti, D, Fiacchino, D, Frialdi, M, Galuppini, L, Gorrini, C, Gritti, A, Gritti, P, Lonati, S, Martinazzi, D, Messa, C, Minardi, A, Nascimbene, L, Oldani, D, Pasqualini, E, Perazzolo, F, Pirovano, L, Pozzi, L, Rocchetti, G, Rossi, S, Rota, L, Rubaga, N, Russo, G, Sala, J, Seregni, S, Sessa, F, Silvestri, S, Simoncelli, P, Soresi, D, Stemberger, C, Tagliabue, P, Tettamanti, K, Vinci, M, Vittadini, G, Zanimacchia, M, Zenato, O, Zetta, A, Bregaglio, S, Chiodini, ME, Perego, A and Acutis, M (2011) A new approach for determining rice critical nitrogen concentration. Journal of Agricultural Science, Cambridge 149, 633638.
Confalonieri, R, Bregaglio, S, Adam, M, Ruget, F, Li, T, Hasegawa, T, Yin, X, Zhu, Y, Boote, K, Buis, S, Fumoto, T, Gaydon, D, Lafarge, T, Marcaida, M, Nakagawa, H, Ruane, AC, Singh, B, Singh, U, Tang, L, Tao, F, Fugice, J, Yoshida, H, Zhang, Z, Wilson, LT, Baker, J, Yang, Y, Masutomi, Y, Wallach, D, Acutis, M and Bouman, B (2016 a) A taxonomy-based approach to shed light on the babel of mathematical models for rice simulation. Environmental Modelling & Software 85, 332341.
Confalonieri, R, Orlando, F, Paleari, L, Stella, T, Gilardelli, C, Movedi, E, Pagani, V, Cappelli, G, Vertemara, A, Alberti, L, Alberti, P, Atanassiu, S, Bonaiti, M, Cappelletti, G, Ceruti, M, Confalonieri, A, Corgatelli, G, Corti, P, Dell'Oro, M, Ghidoni, A, Lamarta, A, Maghini, A, Mambretti, M, Manchia, A, Massoni, G, Mutti, P, Pariani, S, Pasini, D, Pesenti, A, Pizzamiglio, G, Ravasio, A, Rea, A, Santorsola, D, Serafini, G, Slavazza, M and Acutis, M (2016 b) Uncertainty in crop model predictions: what is the role of users? Environmental Modelling & Software 81, 165173.
Debaeke, P, Oosterom, EJV, Justes, E, Champolivier, L, Merrien, A, Aguirrezabal, LAN, González-Dugo, V, Massignam, AM and Montemurro, F (2012) A species-specific critical nitrogen dilution curve for sunflower (Helianthus annuus L.). Field Crops Research 136, 7684.
Fumoto, T, Kobayashi, K, Li, C, Yagi, K and Hasegawa, T (2008) Revising a process-based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes. Global Change Biology 14, 382402.
Gayler, S, Wang, E, Priesack, E, Schaaf, T and Maidl, FX (2002) Modeling biomass growth, N-uptake and phenological development of potato crop. Geoderma 105, 367383.
Ghosh, M, Mandal, BK, Mandal, BB, Lodh, SB and Dash, AK (2004) The effect of planting date and nitrogen management on yield and quality of aromatic rice (Oryza sativa). Journal of Agricultural Science, Cambridge 142, 183191.
Godwin, DC and Jones, CA (1991) Nitrogen dynamics in soil-plant systems. In Hanks, J and Ritchie, JT (eds), Modeling Plant and Soil Systems. Agronomy series no. 31. Madison, WI, USA: ASA, CSSA, SSSA, pp. 287321.
Godwin, DC and Singh, U (1998) Nitrogen balance and crop response to nitrogen in upland and lowland cropping systems. In Tsuji, GY, Hoogenboom, G, Thornton, PK (eds), Understanding Options for Agricultural Production. Systems Approaches for Sustainable Agricultural Development, Vol. 7. Dordrecht, the Netherlands: Springer, pp. 5577.
Greenwood, DJ, Lemaire, G, Gosse, G, Cruz, P, Draycott, A and Neeteson, JJ (1990) Decline in percentage N of C3 and C4 crops with increasing plant mass. Annals of Botany 66, 425436.
Hasegawa, T and Horie, T (1997) Modelling the effect of nitrogen on rice growth and development. In Kropff, MJ, Teng, PS, Aggarwal, PK, Bouma, J, Bouman, BAM, Jones, JW, van Laar, HH (eds), Applications of Systems Approaches at the Field Level. Systems Approaches for Sustainable Agricultural Development, Vol. 6. Dordrecht, the Netherlands: Springer, pp. 243257.
Hasegawa, T, Li, T, Yin, X, Zhu, Y, Boote, K, Baker, J, Bregaglio, S, Buis, S, Confalonieri, R, Fugice, J, Fumoto, T, Gaydon, D, Kumar, SN, Lafarge, T, Marcaida Iii, M, Masutomi, Y, Nakagawa, H, Oriol, P, Ruget, F, Singh, U, Tang, L, Tao, F, Wakatsuki, H, Wallach, D, Wang, Y, Wilson, LT, Yang, L, Yang, Y, Yoshida, H, Zhang, Z and Zhu, J (2017) Causes of variation among rice models in yield response to CO2 examined with free-air CO2 enrichment and growth chamber experiments. Scientific Reports 7, 14858.
Jaggard, KW, Qi, A and Armstrong, MJ (2009) A meta-analysis of sugarbeet yield responses to nitrogen fertilizer measured in England since 1980. Journal of Agricultural Science, Cambridge 147, 287301.
Jamieson, PD, Porter, JR and Wilson, DR (1991) A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research 27, 337350.
Jones, CA, Kiniry, JR and Dyke, PT (1986) CERES-Maize: a Simulation Model of Maize Growth and Development. College Station, TX, USA: Texas A&M University Press.
Jones, JW, Hoogenboom, G, Porter, CH, Boote, KJ, Batchelor, WD, Hunt, LA, Wilkens, PW, Singh, U, Gijsman, AJ and Ritchie, JT (2003) The DSSAT cropping system model. European Journal of Agronomy 18, 235265.
Ju, XT, Xing, GX, Chen, XP, Zhang, SL, Zhang, LJ, Liu, XJ, Cui, ZL, Yin, B, Christie, P, Zhu, ZL and Zhang, FS (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences USA 106, 30413046.
Justes, E, Mary, B, Meynard, JM, Machet, JM and Thelier-Huché, L (1994) Determination of a critical nitrogen dilution curve for winter wheat crops. Annals of Botany 74, 397407.
Lemaire, G and Gastal, F (1997) N uptake and distribution in plant canopies. In Lemaire, G (ed), Diagnosis of the Nitrogen Status in Crops. Dordrecht, the Netherlands: Springer, pp. 343.
Li, T, Hasegawa, T, Yin, X, Zhu, Y, Boote, K, Adam, M, Bregaglio, S, Buis, S, Confalonieri, R, Fumoto, T, Gaydon, D, Marcaida, M, Nakagawa, H, Oriol, P, Ruane, AC, Ruget, F, Singh, B, Singh, U, Tang, L, Tao, F, Wilkens, P, Yoshida, H, Zhang, Z and Bouman, B (2015) Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology 21, 13281341.
Liu, L, Wang, E, Zhu, Y and Tang, L (2012) Contrasting effects of warming and autonomous breeding on single-rice productivity in China. Agriculture, Ecosystems & Environment 149, 2029.
Liu, L, Wang, E, Zhu, Y, Tang, L and Cao, W (2013) Effects of warming and autonomous breeding on the phenological development and grain yield of double-rice systems in China. Agriculture, Ecosystems & Environment 165, 2838.
Naylor, REL and Stephen, NH (1993) Effects of nitrogen and the plant-growth regulator chlormequat on grain size, nitrogen content and amino acid composition of triticale. Journal of Agricultural Science, Cambridge 120, 159169.
Peng, S, Buresh, RJ, Huang, J, Zhong, X, Zou, Y, Yang, J, Wang, G, Liu, Y, Hu, R, Tang, Q, Cui, K, Zhang, F and Dobermann, A (2011) Improving nitrogen fertilization in rice by site-specific N management. In Lichtfouse, E, Hamelin, M, Navarrete, M and Debaeke, P (eds), Sustainable Agriculture, Vol. 2. Dordrecht, the Netherlands: Springer, pp. 943952.
Senanayake, N, Naylor, REL and DeDatta, SK (1996) Effect of nitrogen fertilization on rice spikelet differentiation and survival. Journal of Agricultural Science, Cambridge 127, 303309.
Sheehy, JE, Dionora, MJA, Mitchell, PL, Peng, S, Cassman, KG, Lemaire, G and Williams, RL (1998) Critical nitrogen concentrations: implications for high-yielding rice (Oryza sativa L.) cultivars in the tropics. Field Crops Research 59, 3141.
Singh, U, Ritchie, JT and Godwin, DC (1993) A Users Guide to CERES-Rice V2. 10, Simulation Manual. Muscle Shoals, AL, USA: International Fertilizer Development Center.
Tang, L, Zhu, Y, Hannaway, D, Meng, Y, Liu, L, Chen, L and Cao, W (2009) Ricegrow: a rice growth and productivity model. NJAS – Wageningen Journal of Life Sciences 57, 8392.
Tei, F, Benincasa, P and Guiducci, M (2002) Critical nitrogen concentration in processing tomato. European Journal of Agronomy 18, 4555.
Van Oosterom, EJ, Carberry, PS and Muchow, RC (2001) Critical and minimum N contents for development and growth of grain sorghum. Field Crops Research 70, 5573.
Yao, X, Ata-Ul-Karim, ST, Zhu, Y, Tian, Y, Liu, X and Cao, W (2014 a) Development of critical nitrogen dilution curve in rice based on leaf dry matter. European Journal of Agronomy 55, 2028.
Yao, X, Zhao, B, Tian, YC, Liu, XJ, Ni, J, Cao, WX and Zhu, Y (2014 b) Using leaf dry matter to quantify the critical nitrogen dilution curve for winter wheat cultivated in eastern China. Field Crops Research 159, 3342.
Ye, HB, Liu, XJ, Zhu, Y and Cao, WX (2007) Study on growth model-based decision support system for rice-wheat rotation production. Journal of Triticeae Crops 2, 020.
Yin, X and Van Laar, HH (2005) Crop Systems Dynamics: An Ecophysiological Simulation Model for Genotype-by-Environment Interactions. Wageningen, the Netherlands: Wageningen Academic Pub.
Yin, X, Kersebaum, KC, Kollas, C, Manevski, K, Baby, S, Beaudoin, N, Öztürk, I, Gaiser, T, Wu, L, Hoffmann, M, Charfeddine, M, Conradt, T, Constantin, J, Ewert, F, De Cortazar-Atauri, IG, Giglio, L, Hlavinka, P, Hoffmann, H, Launay, M, Louarn, G, Manderscheid, R, Mary, B, Mirschel, W, Nendel, C, Pacholski, A, Palosuo, T, Ripoche-Wachter, DP, Rötter, RP, Ruget, F, Sharif, B, Trnka, M, Ventrella, D, Weigel, HJ and Olesen, JE (2017) Performance of process-based models for simulation of grain N in crop rotations across Europe. Agricultural Systems 154, 6377.
Yue, S, Meng, Q, Zhao, R, Li, F, Chen, X, Zhang, F and Cui, Z (2012) Critical nitrogen dilution curve for optimizing nitrogen management of winter wheat production in the North China Plain. Agronomy Journal 104, 523529.
Zadoks, JC, Chang, TT and Konzak, CF (1974) A decimal code for the growth stages of cereals. Weed Research 14, 415421.
Zhang, W, Wu, L, Wu, X, Ding, Y, Li, G, Li, J, Weng, F, Liu, Z, Tang, S, Ding, C and Wang, S (2016) Lodging resistance of japonica rice (Oryza sativa). Rice 9, 31.
Zhao, B, Yao, X, Tian, Y, Liu, X, Ata-Ul-Karim, ST, Ni, J, Cao, W and Zhu, Y (2014 a) New critical nitrogen curve based on leaf area index for winter wheat. Agronomy Journal 106, 379389.
Zhao, Z, Wang, E, Wang, Z, Zang, H, Liu, Y and Angus, JF (2014 b) A reappraisal of the critical nitrogen concentration of wheat and its implications on crop modeling. Field Crops Research 164, 6573.
Ziadi, N, Brassard, M, Bélanger, G, Cambouris, AN, Tremblay, N, Nolin, MC, Claessens, A and Parent, LE (2008) Critical nitrogen curve and nitrogen nutrition index for corn in eastern Canada. Agronomy Journal 100, 271276.
Ziadi, N, Bélanger, G, Claessens, A, Lefebvre, L, Cambouris, AN, Tremblay, N, Nolin, MC and Parent, (2010) Determination of a critical nitrogen dilution curve for spring wheat. Agronomy Journal 102, 241250.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Agricultural Science
  • ISSN: 0021-8596
  • EISSN: 1469-5146
  • URL: /core/journals/journal-of-agricultural-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed