Skip to main content Accessibility help

Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe

  • S. THALER (a1), J. EITZINGER (a1) (a2), M. TRNKA (a2) (a3) and M. DUBROVSKY (a3) (a4)


The main objective of the present crop simulation study was to determine the impact of climate change on the winter wheat production of a dry area situated in north-east Austria (Marchfeld region) based on the CERES-Wheat crop-growth simulation model associated with global circulation models (GCMs). The effects of some of the feasible regional- and farm-based adaptation measures (management options) on crop yield and water and nitrogen (N) balance under the climate scenarios were simulated. Climate scenarios were defined based on the ECHAM5, HadCM3 and NCAR PCM GCM simulations for future conditions (2021–50) as described in the Special Report on Emission Scenarios A1B (Nakicenovic & Swart 2000). The potential development, yield, water demand and soil N leaching were estimated for winter wheat and all of the defined climates (including rising CO2 levels) and management scenarios (soil cultivation, windbreaks and irrigation).

The results showed that a warming of 2°C in the air temperature would shorten the crop-growing period by up to 20 days and would decrease the potential winter wheat yield on nearly all of the soil types in the region. Particularly, high-yield reductions were projected for light-textured soils such as Parachernozems. A change from ploughing to minimum tillage within the future scenario would lead to an increase of up to 8% of the mean yield of winter wheat. This effect mainly resulted from improved water supply to the crop, associated with higher soil water storage capacity and decrease of unproductive water losses. Hedgerows, which reduce the wind speed, were predicted to have particularly positive effects on medium and moderately fine-textured soils such as Chernozems and Fluvisols. With both management changes, regional mean-yield level can be expected to be +4% in comparison with no management changes in the future conditions. Compared with the baseline period, water demand for the potential yield of winter wheat would require 6–37 mm more water per crop season (area-weighted average). The highest water demand would be on medium-textured soils, which make up the largest amount of area in the study region. Additionally, the effects of snow accumulation near hedgerows would further increase the yield, but would also lead to higher N leaching rates. However, specific management options, such as minimum tillage and hedgerows, could contribute towards reducing the increasing water demand.


Corresponding author

*To whom all correspondence should be addressed. Email:


Hide All
Alexandrov, V. A., Eitzinger, J., Cajic, V. & Oberforster, M. (2002). Potential impact of climate change on selected agricultural crops in north-eastern Austria. Global Change Biology 8, 372389.
Alexandrov, V. A. & Hoogenboom, G. (2000). The impact of climate variability and change on crop yield in Bulgaria. Agricultural and Forest Meteorology 104, 315327.
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. (1998). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Rome, Italy: FAO.
Amthor, J. S. (2001). Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crops Research 73, 134.
Brenner, A. J. (1996). Microclimate modifications in agroforestry. In Tree-Crop Interactions (Eds Ong, C. K. & Huxley, P.), pp. 159187. Oxon, UK: CAB International.
Brenner, A. J., Jarvis, P. G. & Van Den Beldt, R. (1995). Windbreak–crop interactions in the Sahel. 2. Crop response of millet in shelter. Agricultural and Forest Meteorology 75, 235262.
BFW – Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft (2007). Digitale Bodenkarte von Österreich. Vienna: BFW.
Challinor, A. (2011). Forecasting food. Nature Climate Change 1, 103104.
Chen, C. C. & McCARL, B. A. (2001). An investigation of the relationship between pesticide usage and climate change. Climatic Change 50, 475487.
Cepuder, P. (1999). Zur Nitratproblematik in Ostösterreich, dem Tullner Feld, dem Marchfeld und dem nördlichen Burgenland. In BAL – Bericht Nr. 8 (Ed. Bundesanstalt für Alpenländische Landwirtschaft), pp. 14. Gumpenstein, Austria: Eigenverlag.
Cepuder, P. & Schlederer, W. (2002). Untersuchung der Grundwasserbelastung mit Nitrat unter Feldgemüsebau im pannonischen Klimaraum. Endbericht. Vienna: Bundesministeriums für Land- und Forstwirtschaft.
Cleugh, H. A., Miller, J. & Bohm, M. (1998). Direct mechanical effects of wind on crops. Agroforestry Systems 41, 85112.
Curry, R. B., Peart, R. M., Jones, J. W., Boote, K. J. & Allen, L. H. (1990). Simulation as a tool for analyzing crop response to climate change. Transactions of the American Society of Agricultural Engineers 33, 981990.
Davies, W. J., Zhang, J., Yang, J. & Dodd, I. C. (2011). Novel crop science to improve yield and resource use efficiency in water-limited agriculture. Journal of Agricultural Science, Cambridge 149 (Suppl. 1), 123131.
Dubrovsky, M. (1997). Creating daily weather series with use of the weather generator. Environmetrics 8, 409424.
Dubrovsky, M., Zalud, Z. & Stastna, M. (2000). Sensitivity of CERES-Maize yields to statistical structure of daily weather series. Climatic Change 46, 447472.
Dubrovsky, M., Buchtele, J. & Zalud, Z. (2004). High-frequency and low-frequency variability in stochastic daily weather generator and its effect on agricultural and hydrologic modelling. Climatic Change 63, 145179.
Dubrovsky, M., Nemesova, I. & Kalvova, J. (2005). Uncertainties in climate change scenarios for the Czech Republic. Climate Research 29, 139156.
Dubrovsky, M., Svoboda, M. D., Trnka, M., Hayes, M. J., Wilhite, D. A., Zalud, Z. & Hlavinka, P. (2008). Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theoretical and Applied Climatology 96, 155171.
Eitzinger, J., Formayer, H., Thaler, S., Trnka, M., Zdenek, Z. & Alexandrov, V. (2008). Results and uncertainties of climate change impact research in agricultural crop production in Central Europe. Die Bodenkultur 59, 131147.
Eitzinger, J., Orlandini, S., Stefanski, R. & Naylor, R. E. L. (2010). Climate change and agriculture: introductory editorial. Journal of Agricultural Science, Cambridge 148, 499500.
Eitzinger, J., Stastná, M., Zalud, Z. & Dubrovsky, M. (2003). A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. Agricultural Water Management 61, 195217.
Falloon, P. & Betts, R. (2010). Climate impacts on European agriculture and water management in the context of adaptation and mitigation – the importance of an integrated approach. Science of the Total Environment 408, 56675687.
Fuhrer, J. (2003). Agroecosystem responses to combinations of elevated CO2, ozone and global climate change. Agriculture, Ecosystems and Environment 97, 120.
Gerersdorfer, T., Eitzinger, J. & Rischbeck, P. (2009). Simulation of crop yield near hedgerows under aspects of a changing climate – an Austrian attempt. In Climate Variability, Modeling Tools and Agricultural Decision-Making (Ed. Utset, A.), pp. 321330. Hauppauge, NY: Nova Science Publishers.
Ghaffari, A., Cook, H. F. & Lee, H. C. (2002). Climate change and winter wheat management: a modelling scenario for south-eastern England. Climatic Change 55, 509533.
Godwin, D. C. & Jones, C. A. (1991). Nitrogen dynamics in soil-plant systems. In Modeling Plant and Soil Systems. Agronomy Monograph No. 31 (Eds Hanks, J. & Ritchie, J. T.), pp. 287321. Madison, WI: ASA, CSSA & SSSA.
Godwin, D. C. & Singh, U. (1998). Nitrogen balance and crop response to nitrogen in upland and lowland cropping systems. In Understanding Options for Agricultural Production. System Approaches for Sustainable Agricultural Development (Eds Tsuji, G. Y., Hoogenboom, G. & Thornton, P. K.), pp. 5577. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Hall, A. E. (2001). Crop Responses to Environment. Boca Raton, FL: CRC Press LLC.
Harvey, L. D. D., Gregory, J., Hoffert, M., Jain, A., Lal, M., Leemans, R., Raper, S. B. C., Wigley, T. M. L. & De Wolde, J. (1997). An Introduction to Simple Climate Models used in the IPCC Second Assessment Report. IPCC Technical Paper 2 (Eds Houghton, J. T., Meira Filho, L. G., Griggs, D. J. & Noguer, M.). Geneva, Switzerland: IPCC.
Hathfield, J. L. (1979). Canopy temperatures: the usefulness and reliability of remote measurements. Agronomy Journal 71, 889892.
Hlavinka, P., Eitzinger, J., Smutny, V., Thaler, S., Zhalud, Z., Rischbeck, P. & Kren, J. (2010). The performance of CERES-Barley and CERES-Wheat under various soil conditions and tillage practices in Central Europe. Bodenkultur 61, 921.
Hulme, M., Wigley, T. M. L., Barrow, E. M., Raper, S. C. B., Centella, A., Smith, S. & Chipanshi, A. C. (2000). Using a Climate Scenario Generator for Vulnerability and Adaptation Assessments: Magicc and SCENGEN Version 2.4 Workbook. Norwich, UK: Climatic Research Unit.
Hunt, L. A., Pararajasingham, S., Jones, J. W., Hoogenboom, G., Imamura, D. T. & Ogoshi, R. M. (1993). Gencalc: software to facilitate the use of crop models for analyzing field experiments. Agronomy Journal 85, 10901094.
Hunt, L. A., White, J. W. & Hoogenboom, G. (2001). Agronomic data: advances in documentation and protocols for exchange and use. Agricultural Systems 70, 477492.
Iqbal, M. A., Eitzinger, J., Formayer, H., Hassan, A. & Heng, L. K. (2011). A simulation study for assessing yield optimization and potential for water reduction for summer-sown maize under different climate change scenarios. Journal of Agricultural Science, Cambridge 149, 129143.
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J. & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy 18, 235265.
Jones, J. W., Keating, B. A. & Porter, C. H. (2001). Approaches to modular model development. Agricultural Systems 70, 421443.
Kartschall, T., Grossman, S., Pinter, P. J., Garcia, R. L., Kimball, B. A., Wall, G. W., Hunsaker, D. J. & Lamorte, R. L. (1995). A simulation of phenology, growth, carbon dioxide exchange and yields under ambient atmosphere and free-air carbon dioxide enrichment (FACE) Maricopa, Arizona, for wheat. Journal of Biogeography 22, 611622.
Kaukoranta, T. & Hakala, K. (2008). Impact of spring warming on sowing times of cereal, potato and sugar beet in Finland. Agricultural and Food Science 17, 165176.
Kersebaum, K. C., Nendel, C., Mirschel, W., Manderscheid, R., Weigel, H.-J. & Wenkel, K.-O. (2008). Testing different CO2 response algorithms against a FACE crop rotation experiment and application for climate change impact assessment on different sites in Germany. In Symposium on Climate Change and Variability – Agro-meteorological Monitoring and Coping Strategies for Agriculture, 3–6 June 2008, Oscarsborg, Norway. Book of Abstracts (Eds Sivertsen, T. H., Skjelvåg, A. O., Orlandini, S., Sivakumar, M. V. K., Eitzinger, J., Nejedlik, P., Alexandrov, V., Toulios, L., Calanca, P., Stefanski, R., Motha, R., Gamedze, M., Trnka, M., Smith, W. & Netland, J.), p. 30. Ås, Norway: Bioforsk.
Klik, A. & Eitzinger, J. (2010). Impact of climate change on soil erosion and the efficiency of soil conservation practices in Austria. Journal of Agricultural Science, Cambridge 148, 529541.
KovácS, G. J., Németh, T. & Ritchie, J. T. (1995). Testing simulation models for the assessment of crop production and nitrate leaching in Hungary. Agricultural Systems 49, 385397.
Kristensen, K., Schelde, K. & Olesen, J. E. (2011). Winter wheat yield response to climate variability in Denmark. Journal of Agricultural Science, Cambridge 149, 3347.
Kuemmel, B. (2003). Theoretical investigation of the effects of field margin and hedges on crop yields. Agriculture, Ecosystems and Environment 95, 387392.
Linke, R., Pfundtner, E., Bolhar-Nordenkampf, H. R., Dersch, G. & Meister, M. (2005). Crops and climate change: influences of changed growth conditions on water relations and yield of different cultural crops. Mitteilungen der Gesellschaft für Pflanzenbauwissenschaften 17, 313314.
Martínez, E., Fuentes, J.-P., Silva, P., Valle, S. & Acevedo, E. (2008). Soil physical properties and wheat root growth as affected by no-tillage and conventional tillage systems in a Mediterranean environment of Chile. Soil and Tillage Research 99, 232244.
Mayus, M., Van Keulen, H. & Stroosnijder, L. (1999). A model of tree-crop competition for windbreak systems in the Sahel: description and evaluation. Agroforestry Systems 43, 183201.
Morison, J. I. L. & Lawlor, D. W. (1999). Interactions between increasing CO2 concentration and temperature on plant growth. Plant, Cell and Environment 22, 659682.
Müller, W. (1993). Agroklimatische Kennzeichnung des Marchfelds, Beiheft 3 zu den Jahrbüchern der Zentralanstalt für Meteorologie und Geodynamik. Vienna: Eigenverlag.
Nakicenovic, N. & Swart, R. (2000). Emissions Scenarios – A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
Nijbroeka, R., Hoogenboomb, G. & Jonesa, J. W. (2003). Optimizing irrigation management for a spatially variable soybean field. Agricultural Systems 76, 359377.
Nuberg, I. K. (1998). Effect of shelter on temperate crops: a review to define research for Australian conditions. Agroforestry Systems 41, 334.
Oberforster, M. & Werteker, M. (2009). Relative Vorzüglichkeit verschiedener Weizensorten in Abhängigkeit von Ertrag, Qualität und Erzeugerpreisen. In Werte – Wege – Wirkungen: Biolandbau im Spannungsfeld zwischen Ernährungssicherung, Markt und Klimawandel. Beiträge zur 10. Wissenschaftstagung zum Ökologischer Landbau, Zurich, 11–13 February 2009. Band 2: Tierhaltung, Agrarpolitik und Betriebswirtschaft, Märkte und Lebensmittel (Eds von Jochen Mayer, H., Alföldi, T., Leiber, F., Dubois, D., Fried, P., Heckendorn, F., Hillmann, E., Klocke, P., Lüscher, A., Riedel, S., Stolze, M., Strasser, F., van der Heijden, M. & Willer, H.), pp. 302305.
Olesen, J. E., Carter, T. R., Diaz-Ambrona, C. H., Fronzek, S., Heidmann, T., Hickler, T., Holt, T., Minguez, M. I., Morales, P., Palutikov, J., Quemada, M., Ruiz-Ramos, M., Rubæk, G., Sau, F., Smith, B. & Sykes, M. (2007). Uncertainties in projected impacts of climate change on European agriculture and ecosystems based on scenarios from regional climate models. Climatic Change 81 (Supp. 1), 123143.
Olesen, J. E., Trnka, M., Kersebaum, K. C., Skjelvåg, A. O., Seguin, B., Peltonen-Sainio, P., Rossi, F., Kozyra, J. & Micale, F. (2011). Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy 34, 96112.
Orlandini, S., Nejedlik, P., Eitzinger, J., Alexandrov, V., Toulios, L., Calanca, P., Trnka, M. & Olesen, J. E. (2008). Impacts of climate change and variability on European agriculture: results of inventory analysis in COST 734 countries. Annals of the New York Academy of Sciences 1146, 338353.
Osunbitan, J. A., Oyedele, D. J. & Adekalu, K. O. (2005). Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil and Tillage Research 82, 5764.
Palosuo, T., Kersebaum, K. C., Angulo, C., Hlavinka, P., Moriondo, M., Olesen, J. E., Patil, R. H., Ruget, F., Rumbaur, C., Takac, J., Trnka, M., Bindi, M., Caldag, B., Ewert, F., Ferrise, R., Mirschel, W., Saylan, L., Siska, B. & Rötter, R. (2011). Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. European Journal of Agronomy 35, 103114.
Patil, R. H., Laegdsmand, M., Olesen, J. E. & Porter, J. R. (2010). Growth and yield response of winter wheat to soil warming and rainfall patterns. Journal of Agricultural Science, Cambridge 148, 553566.
Peart, R. M., Jones, J. W., Curry, R. B., Boote, K. J. & Allen, L. H. (1989). Impact of climate change on crop yield in the southwestern USA: a simulation study. In The Potential Effects of Global Climate Change on the United States, Vol. 1 (Eds Smith, J. B. & Tirpak, D. A.), pp. 154. Washington, DC: USEPA.
Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences 193, 120145.
Penman, H. L. (1963). Vegetation and Hydrology. Technical Communication No. 53. Harpenden, UK: Commonwealth Bureau of Soils.
Rischbeck, P. M. (2007). Der Einfluss von Klimaänderung, Bodenbearbeitung und Saattermin auf den Wasserhaus halt und das Ertragspotential von Getreide im Marchfeld. Ph.D. Thesis, University of Natural Resources and Life Sciences, Vienna, Austria.
Rötter, R. P., Carter, T. R., Olesen, J. E. & Porter, J. R. (2011). Crop-climate models need an overhaul. Nature Climate Change 1, 175177.
Rowe, E. C., Van Noordwijk, M., Suprayogo, D. & Cadisch, G. (2005). Nitrogen use efficiency of monoculture and hedgerow intercropping in the humid tropics. Plant and Soil 268, 6174.
Seo, S. N. (2011). A geographically scaled analysis of adaptation to climate change with spatial models using agricultural systems in Africa. Journal of Agricultural Science, Cambridge 149, 437449.
Shahabfar, A. & Eitzinger, J. (2011). Agricultural drought monitoring in semi-arid and arid areas using MODIS data. Journal of Agricultural Science, Cambridge 149, 403414.
Singh, A. K., Tripathy, R. & Chopra, U. K. (2008). Evaluation of CERES-Wheat and CropSyst models for water–nitrogen interactions in wheat crop. Agricultural Water Management 95, 776786.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L. (2007). Climate Change 2007. Working Group I: The Physical Science Basis. Cambridge, UK: Cambridge University Press.
Thaler, S., Eitzinger, J., Rischbeck, P., Dubrovsky, M. & Trnka, M. (2010). Vulnerability of crops to climate change in Northeastern Austria. Bulgarian Journal of Meteorology and Hydrology 15, 5061.
Timsina, J., Singh, U., Badaruddin, M. & Meisner, C. (1998). Cultivar, nitrogen, and moisture effects on a rice–wheat sequence: experimentation and simulation. Agronomy Journal 90, 119130.
Trnka, M., Dubrovsky, M. & Zalud, Z. (2004 a). Climate change impacts and adaptation strategies in spring barley production in the Czech Republic. Climatic Change 64, 227255.
Trnka, M., Dubrovsky, M., Semerádová, D. & Zalud, Z. (2004 b). Projections of uncertainties in climate change scenarios into expected winter wheat yields. Theoretical and Applied Climatology 77, 229249.
Trnka, M., Eitzinger, J., Dubrovsky, M., Semeradova, D., Stepanek, P., Hlavinka, P., Balek, J., Skalak, P., Farda, A., Formayer, H. & Zalud, Z. (2010 a). Is rainfed crop production in central Europe at risk? Using a regional climate model to produce high resolution agroclimatic information for decision makers. Journal of Agricultural Science, Cambridge 148, 639656.
Trnka, M., Eitzinger, J., Semerádová, D., Hlavinka, P., Balek, J., Dubrovský, M., Kubu, G., Štepánek, P., Thaler, S., Možný, M. & Žalud, Z. (2011 a). Expected changes in agroclimatic conditions in Central Europe. Climatic Change 108, 261289.
Trnka, M., Kocmankova, E., Balek, J., Eitzinger, J., Ruget, F., Formayer, H., Hlavinka, P., Schaumberger, A., Horakova, V., Mozny, M. & Zalud, Z. (2010 b). Simple snow cover model for agrometeorological applications. Agricultural and Forest Meteorology 150, 11151127.
Trnka, M., Olesen, J. E., Kersebaum, K.-C., Skjelvag, A. O., Eitzinger, J., Seguin, B., Peltonen-Sainio, P., Rötter, R., Iglesias, A., Orlandini, S., Dubrowsky, M., Hlavinka, P., Balek, J., Eckersten, H., Cloppet, E., Calanca, P., Gobin, A., Vucetic, V., Nejedlik, P., Kumar, S., Lalic, B., Mestre, A., Rossi, F., Kozyra, J., Alexandrov, V., Semerádová, D. & Žalud, Z. (2011 b). Agroclimatic conditions in Europe under climate change. Global Change Biology 17, 22982318.
Tubiello, F. N., Amthor, J. S., Boote, K. J., Donatelli, M., Easterling, W., Fischer, G., Gifford, R. M., Howden, M., Reilly, J. & Rosenzweig, C. (2007). Crop response to elevated CO2 and world food supply. A comment on ‘Food for Thought…’ by Long et al., Science 312:1918–1921, 2006. European Journal of Agronomy 26, 215223.
Tubiello, F. N., Donatelli, M., Rosenzweig, C. & Stockle, C. O. (2000). Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. European Journal of Agronomy 13, 179189.
Tsuji, G., Hoogenboom, G. & Thornton, P. (1998). Understanding Options for Agricultural Production. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Uhlir, P. F. & Carter, G. C. (1994). Crop Modelling and Related Environmental Data, a Focus on Applications for Arid and Semiarid Regions in Developing Countries. Paris, France: CODATA – Commission on Global Change Data.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed