Skip to main content Accessibility help
×
Home

Hydraulic resistances in seedlings of Coffea arabica accessions under contrasting shade regimes in southwestern Ethiopia

  • K. TAYE (a1) and J. BURKHARDT (a2)

Summary

The study was carried out to determine the variations among different Coffea arabica germplasm lines in hydraulic resistances under controlled nursery settings at the Jimma Agricultural Research Center in southwest Ethiopia. The experimental treatments included contrasting shade conditions (moderate shading v. full sunlight) and seedlings of 12 arabica coffee accessions of varying geographical areas in Ethiopia. Root hydraulic conductance and hydraulic resistances in the whole-shoot and different shoot parts were measured using a high-pressure flow meter. The results depicted significantly lower hydraulic resistances in the whole-shoot and in various shoot segments from the full sunlight exposed seedlings. The contribution of root and shoot resistances varied significantly in response to shade treatments. Likewise, seedlings of coffee accessions exhibited significant variation in the resistance contribution of the main stem-cut to whole-shoot resistances. The maximum hydraulic resistances in main stem-cut were noted in the order of Bonga>Berhane-Kontir>Yayu>Harenna coffee populations, suggesting a direct relationship between growth and hydraulic characteristics. The resistance contributions declined across seedling growth parts: roots>leaf>whole-shoot>lateral branch>petiole, which is consistent with hydraulic gradients and thus sensitivity to drought stress. Moreover, the findings indicate the possibility of predicating the latter stage performances of coffee genotypes at specific field locations. In support of the hypothesis, the effects of both environmental and genetic factors need to be considered in fully understanding drought tolerance strategies in coffee genotypes. In view of the continuous multifaceted threats on the untapped coffee genetic resources, due mainly to, among others, anthropogenic activities coupled with climate change, there is an urgent need for global collaborative actions for future development of the coffee sector in Ethiopia and worldwide.

Copyright

Corresponding author

*To whom all correspondence should be addressed. Email: kufataye@yahoo.com

References

Hide All
Burkhardt, J., Kufa, T., Beining, A., Goldbach, H. & Fetene, M. (2006). Different drought adaptation strategies of Coffea arabica populations along rainfall gradient in Ethiopia. In Proceedings of the 21st International Scientific Colloquium on Coffee, 11–15 September 2006, Montpellier, France, pp. 10321036. Bussigny, Switzerland: ASIC.
Clark, L. J., Gowing, D. J. G., Lark, R. M., Leeds-Harrison, P. B., Miller, A. J., Wells, D. M., Whalley, W. R. & Whitmore, A. P. (2005). Sensing the physical and nutritional status of the root environment in the field: a review of progress and opportunities. Journal of Agricultural Science, Cambridge 143, 347358.
Coste, R. (1992). Coffee: The Plant and the Product. London: MacMillan.
DaMatta, F. M. (2004). Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Research 86, 99114.
DaMatta, F. M. & Ramalho, J. D. C. (2006). Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology 18, 5581.
DaMatta, F. M., Loos, R. A., Silva, E. A. & Loureiro, M. E. (2002). Limitations to photosynthesis in Coffea canephora as a result of nitrogen and water availability. Journal of Plant Physiology 159, 975981.
Dias, P. C., Araujo, W. L., Moraes, G. A. B. K., Barros, R. S. & Damatta, F. M. (2007). Morphological and physiological responses of two coffee progenies to soil water availability. Journal of Plant Physiology 164, 16391647.
Edjamo, Y., Shimber, T., Kufa, T., Yilma, A., Negewo, T., Netsere, A. & Bogale, B. (1996). Advances in coffee agronomy research in Ethiopia. In Proceedings of the Inter-Africa Coffee Organization (IACO) Workshop, 4–6 September 1995, Kampala, Uganda (Eds Tenywa, J. S., Ekwamu, A. & Ogengu-Latigo, M. W.), pp. 4045. Abidjan, Côte d'Ivoire: OIAC.
Ewers, F. W., Carlton, M. R., Fisher, J. B., Kolb, K. J. & Tyree, M. T. (1997). Vessel diameters in roots versus stems of tropical lianas and other growth forms. IAWA Journal 18, 261279.
Greenwood, D. J., Zhang, K., Hilton, H. W. & Thompson, A. J. (2010). Opportunities for improving irrigation efficiency with quantitative models, soil water sensors and wireless technology. Journal of Agricultural Science, Cambridge 148, 116.
Hale, M. G. & Orcutt, D. M. (1987). The Physiology of Plant under Stress. New York: Wiley-Blackwell.
Hopkins, W. G. (1995). Introduction to Plant Physiology. New York: John Wiley and Sons Inc.
Institute of Agricultural Research (IAR) (1996). Recommended Production Technologies for Coffee and Associated Crops. Addis Ababa, Ethiopia: Jimma Agricultural Research Center, p. 17.
Katul, G., Leuning, R. & Oren, R. (2003). Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant, Cell and Environment 26, 339350.
Larcher, W. (2003). Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups, 4th edn. Berlin: Springer-Verlag.
Meinzer, F. C., Grantz, D. A., Goldstein, G. & Saliendra, N. Z. (1990). Leaf water relations and maintenance of gas exchange in coffee cultivars grown in drying soil. Plant Physiology 94, 17811787.
Patil, N. G., Rajput, G. S., Nema, R. K. & Singh, R. B. (2010). Predicting hydraulic properties of seasonally impounded soils. Journal of Agricultural Science, Cambridge 148, 159170.
Paulos, D. & Demel, T. (2000). The need for forest coffee germplasm conservation in Ethiopia and its significance in the control of coffee diseases. In Proceedings of the Workshop on Contreol of Coffee Berry Disease (CBD) in Ethiopia, 13–15 August 1999, Addis Ababa, Ethiopia (Ed. EARO), pp. 125135. Addis Ababa, Ethiopia: Ethiopian Agricultural Research Organization (EARO).
Prasad, M. N. V. (1997). Plant Ecophysiology. New York: Wiley-Blackwell.
Ritchie, G. A. & Hinckley, T. M. (1975). The pressure chamber as an instrument for ecological research. Advances in Ecological Research 9, 165254.
Sack, L., Tyree, M. T. & Holbrook, N. M. (2005). Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Physiologist 167, 403413.
Santiago, L. S., Goldstein, G., Meinzer, F. C., Fisher, J. B., Machado, K., Woodruff, D. & Jones, T. (2004). Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 140, 543550.
Shao, L., Zhang, X., Hideki, A., Tsuji, W. & Chen, S. (2010). Effects of defoliation on grain yield and water use of winter wheat. Journal of Agricultural Science, Cambridge 148, 191204.
Shumway, D. L., Steiner, K. C. & Kolb, T. E. (1993). Variation in seedling hydraulic architecture as a function of species and environment. Tree Physiology 12, 4154.
Sobrado, M. A. (1993). Trade-off between water transport efficiency and leaf life span in a tropical rain forest. Oecologia 96, 1923.
Sperry, J. S. & Tyree, M. A. (1990). Water-stress-induced xylem embolism in three species of conifers. Plant, Cell and Environment 13, 427436.
Tadesse, W. G. (2003). Vegetation of Yayu forest in SW Ethiopia: impacts of human use and implications for in situ conservation of wild Coffea arabica L. populations. Ph.D. Dissertation. Ecology and Development Series No. 10. Göttingen, Germany: Cuvillier Verlag.
Tausend, P. C., Goldstein, G. & Meinzer, F. C. (2000). Water utilization, plant hydraulic properties and xylem vulnerability in three contrasting coffee (Coffea arabica) cultivars. Tree Physiology 20, 159168.
Taye, K. (2006). Ecophysiological diversity of wild Arabica populations in Ethiopia: Growth, water relations and hydraulic characteristics along a climatic gradient. Ph.D. Dissertation, Ecology and Development Series No. 46. Göttingen, Germany: Cuvillier Verlag.
Taye, K. & Burkhardt, J. (2006). Hydraulic conductance of wild Arabica coffee populations in montane rainforests of Ethiopia. In Proceedings of the 21st International Scientific Colloquium on Coffee, 11–15 September 2006, Montpellier, France, pp. 10641070. Bussigny, Switzerland: ASIC. Available from http://www.asic-cafe.org/en/proceedings/3590/toc/43/conf (verified 23 April 2012).
Taye, K., Shimber, T. & Yilma, A. (2002). Influence of media mixture and watering frequency on seed germination and seedling growth of Arabica coffee. In Proceedings of the 19th International Scientific Colloquium on Coffee, 14–18 May 2001, Trieste, Italy. Bussigny, Switzerland: ASIC. Available from: http://www.asic-cafe.org/en/proceedings/3588/toc/7/conf (verified 23 April 2012).
Taye, K., Shimber, T. & Yilma, A. (2004). Adaptation of Arabica coffee landraces along topographic gradients in southern Ethiopia. In Proceedings of the 20th International Conference on Coffee Science, 11–15 October 2004, Bangalore, India, pp. 10461052. Bussigny, Switzerland: ASIC. Available from: http://www.asic-cafe.org/en/proceedings/3589/toc/7/conf (verified 23 April 2012).
Tsuda, M. & Tyree, M. T. (1997). Whole-plant hydraulic resistance and vulnerability segmentation in Acer saccharinum. Tree Physiology 17, 351357.
Tyree, M. T., Graham, M. E. D., Cooper, K. E. & Bazos, L. J. (1983). The hydraulic architecture of Thuja occidentalis. Canadian Journal of Botany 61, 21052111.
Tyree, M. T., Patino, S., Bennink, J. & Alexander, J. (1995). Dynamic measurements of root hydraulic conductance using a high-pressure flowmeter in the laboratory and field. Journal of Experimental Botany 46, 8394.
Whitehead, D. (1998). Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiology 18, 633644.
Wintgens, J. N. (2004). Coffee: Growing, Processing, Sustainable Production. A Guidebook for Growers, Processors, Traders, and Researchers. Weinheim, Germany: Wiley-VCH Verlag GmbH and Co. KGaA.
Wrigley, G. (1988). Coffee. Tropical Agriculture Series. London: Longman Scientific and Technical/John Wiley and Sons.
Yang, S. & Tyree, M. T. (1993). Hydraulic resistance in Acer saccharum shoots and its influence on leaf water potential and transpiration. Tree Physiology 12, 231242.
Zimmermann, M. H. (1978). Hydraulic architecture of some diffuse-porous trees. Canadian Journal of Botany 56, 22862295.
Zimmermann, M. H. (1983). Xylem Structure and the Ascent of Sap. Berlin: Springer-Verlag.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed