Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-21T07:32:06.720Z Has data issue: false hasContentIssue false

Genomic composition and yield heterosis of the partial inter-specific hybrid rice between Oryza sativa L. and Oryza glaberrima Steud.

Published online by Cambridge University Press:  22 April 2015

Y. M. N. ADEDZE
Affiliation:
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China State Key Laboratory of Rice Biology, China National Rice Research Institute, 310006, Hangzhou, China
W. C. HE
Affiliation:
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
A. D. SAMOURA
Affiliation:
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China Agriculture Ministry of Republic of Guinea, National Department of Agriculture, Fertilizers, Plants and Seeds Division, PB.576A, Conakry, Guinea
F. HUANG
Affiliation:
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
Y. N. TONDI
Affiliation:
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
A. EFISUE
Affiliation:
Departments of Crop and Soil Science, University of Port Harcourt, Port Harcourt, Nigeria
S. S. ZHANG
Affiliation:
Hubei Agricultural Extension Station, Wuhan, China
G. S. XIE
Affiliation:
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
D. M. JIN*
Affiliation:
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
*
*To whom all correspondence should be addressed. Email: djin@mail.hzau.edu.cn

Summary

Development of partial inter-specific hybrid (PIH) rice is a promising approach for exploiting inter-specific heterosis between Oryza glaberrima and Oryza sativa. In the present study, the relationship between genetic distance (GD) of parental lines and yield performance of the PIHs was assessed using partial diallel crosses between three indica male sterile lines and 14 introgression lines (ILs) with different fragments of O. glaberrima genes. Twenty two out of the 42 PIHs expressed positive heterobeltiosis (i.e., the Fl hybrid showed superiority over the better parent in the target trait) for panicle number, spikelet number, thousand grain weight and grain yield/plant. The proportion of O. glaberrima genome in the ILs ranged from 0·03 to 0·41, as revealed by 16 informative simple sequence repeat markers. Significant positive correlations were found between the proportion of O. glaberrima genome of the ILs and the GD between the ILs and the three different female parents. Heterosis of spikelet number per panicle in the hybrids was positively proportional with the O. glaberrima genome content of the parental ILs, while that of fertile grain percentage was negatively proportional to the O. glaberrima genome proportion. On average, the PIHs with higher grain yield and highest heterobeltiosis were obtained from the ILs carrying between 0·15 and 0·30 of O. glaberrima genome. The results indicated that a small proportion (<0·15) of the O. glaberrima genome in the ILs might limit heterosis expression of spikelet number per panicle, while a very large proportion (>0·30) of the O. glaberrima genome decreased the grain filling percentage in the PIHs, thus an intermediate range of O. glaberrima genome proportion should be more suitable for breeding heterotic PIHs. The exploitation of inter-specific heterosis between O. glaberrima and O. sativa has potential value for heterotic breeding in rice.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adedze, Y. M., Efisue, A. A., Zhang, S. S., Samoura, D., Huang, F., He, W. C., Xie, G. S. & Jin, D. M. (2012). Identification of interspecific grain yield heterosis between two cultivated rice species Oryza sativa L. and Oryza glaberrima Steud. Australian Journal of Crop Science 6, 15581564.Google Scholar
Ahmadikhah, A., Nasrollanejad, S. & Alishah, O. (2008). Quantitative studies for investigating variation and its effect on heterosis of rice. Plant Breeding 2, 17358043.Google Scholar
Aluko, G. K. (2003). Genetic mapping of agronomic traits from the interspecific cross of Oryza sativa (L.) and Oryza glaberrima (Steud). Ph.D. Dissertation, Louisiana State University.Google Scholar
Barry, M. B., Pham, J. L., Noyer, J. L., Billot, C., Courtois, B. & Ahmadi, N. (2007). Genetic diversity of the two cultivated rice species (O. sativa & O. glaberrima) in Maritime Guinea. Euphytica 154, 127137.Google Scholar
Bimpong, I. K., Carpena, A. L., Mendioro, M. S., Fernandez, J. R., Ramos, J., Reversat, G. & Brar, D. S. (2010). Evaluation of Oryza sativa × Oryza glaberrima derived progenies for resistance to rootknot nematode and identification of introgressed alien chromosome segments using SSR markers. African Journal Biotechnology 9, 39883997.Google Scholar
Bimpong, I. K., Rachid, S., Joong, H. C., Evelyn, M. T. M., Jose, H. & Merlyn, S. M. (2011 a). Determination of genetic variability for physiological traits related to drought tolerance in African rice (Oryza glaberrima). Journal of Plant Breeding and Crop Science 3, 6067.Google Scholar
Bimpong, I. K., Chin, J. H., Ramos, J. & Koh, H. J. (2011 b). Application of subspecies- specific marker system identified from Oryza sativa to Oryza glaberrima accessions and Oryza sativa × Oryza glaberrima F1 interspecific progenies. Genetic Molecular Biology 3, 724.Google Scholar
Cheng, S. H., Li, Y. C., Jie, Y. Z., Shen, G. C., Xiao, D. Z., Ye, Y. F., De, F. Z. & Shao, K. M. (2007). Super hybrid rice breeding in China: achievements and prospects. Journal of Integrative Plant Biology 49, 805810.CrossRefGoogle Scholar
Dingkuhn, M., Jones, M. P., Johnson, D. E. & Sow, A. (1998). Growth and yield potential of Oryza sativa and Oryza glaberrima upland rice cultivars and their interspecific progenies. Field Crops Research 57, 5769.Google Scholar
Efisue, A. A., Tongoona, P., Derera, J. & Ubi, B. E. (2009 a). Screening early-generation progenies of interspecific rice genotypes for drought-stress tolerance during vegetative phase. Journal of Crop Improvement 23, 174193.Google Scholar
Efisue, A. A., Tongoona, P., Derera, J., Ubi, E. B. & Oselebe, O. H. (2009 b). Genetics of morpho-physiological traits in segregating populations of interspecific hybrid rice under stress and non-stress conditions. Journal of Crop Improvement 23, 383401.Google Scholar
Haefele, S. M., Johnson, D. E. & Bodj, D. M. (2004). Field screening of diverse rice genotypes for weed competitiveness in irrigated lowland ecosystems. Field Crops Research 88, 3956.Google Scholar
He, Y. X., Zheng, T. Q., Hao, X. B., Wang, L. F., Gao, Y. M., Hua, Z. T., Zhai, H. Q., Xu, J. L., Xu, Z. J., Zhu, L. H. & Li, Z. K. (2010). Yield performances of japonica introgression lines selected for drought tolerance in a BC breeding program. Plant Breeding 129, 167175.Google Scholar
Heuer, S. & Miezan, K. M. (2003). Assessing hybrid sterility in Oryza glaberrima × O. sativa hybrid progenies by PCR marker analysis and crossing with wide compatibility varieties. Theoretical and Applied Genetics 107, 902909.Google Scholar
Hu, F. Y., Xu, P., Deng, X. N., Zhou, J. W., Li, J. & Tao, D. Y. (2006). Molecular mapping of a pollen killer gene S29 (t) in Oryza glaberrima and co-linear analysis with S22 in O. glumaepatula . Euphytica 151, 273278.Google Scholar
Huang, F., Fu, X., Xie, G., He, W., Adedze, Y. M. N. & Jin, D. M. (2013). Genetically characterizing a new Indica cytoplasmic male sterility with Oryza glaberrima cytoplasm for its potential use in hybrid rice production. Crop Science 53, 132140.Google Scholar
Ikeda, R., Yoshimi, S. & Inoussa, A. (2009). Seed fertility of F1 hybrids between upland rice NERICA cultivars and Oryza sativa L. or O.glaberrima Steud. Breeding Science 59, 2735.CrossRefGoogle Scholar
Ikehashi, H. & Araki, H. (1986). Genetics of F1 sterility in remote crosses of rice. Genetics 189, 10831092.Google Scholar
Jagoz, B. (2011). The relationship between heterosis and genetics distance based on RAPD and AFLP markers in carrot. Plant Breeding 30, 574579.Google Scholar
Jaikishan, I., Rajendrakumar, P., Ramesha, M. S., Viraktamath, B. C., Balachandran, S. M., Neeraja, C. N., Sujatha, K., Srinivasa, R. K., Natarajkumar, P., Hari, Y., Sakthivel, K., Ramaprasad, A. S. & Sundaram, R. M. (2010). Prediction of heterosis for grain yield in rice using key informative EST-SSR. Plant Breeding 129, 108111.CrossRefGoogle Scholar
Jiang, T. B., Li, R. H., Sun, C. Q. & Wang, X. K. (2002). Utilization of diverse rice ecotypes in heterosis breeding. Breeding Science 52, 107113.Google Scholar
Jones, M. P., Dingkuhn, M., Aluko, G. K. & Semon, M. (1997). Interspecific Oryza sativa L.× Oryza glaberrima Steud. progenies in upland rice improvement. Euphytica 92, 237246.Google Scholar
Jones, M. P., Dingkuhn, M., Johnson, D. E. & Sow, A. (1998). Growth and yield potential of Oryza sativa and Oryza glaberrima upland rice cultivars and their interspecific progenies. Field Crops Research 57, 5769.Google Scholar
Koide, Y. A., Onishi, K., Nishimoto, D., Baruah, R., Kanazawa, A. & Sano, Y. (2008). Sex-independent transmission ratio distortion system responsible for reproductive barriers between Asian and African rice species. New Phytologist 179, 888900.Google Scholar
Krishnamurthy, S. L., Mohan, R. A., Madhavi, R. K., Ramesh, S., Hittalmani, S. & Rao, M. G. (2013). Limits of parental divergence for the occurrence of heterosis through morphological and AFLP marker in chilli (Capsicum annuum L.). Current Science 6, 25.Google Scholar
Li, F., Liu, F. H., Morinaga, D. & Zhao, Z. (2011). A new gene for hybrid sterility from a cross between Oryza sativa and O. glaberrima . Plant Breeding 130, 165171.Google Scholar
Liu, W. M. (2012). Correlation and path analysis of yield traits on ‘Yongyou12’ Indica-japonica intersubspecific hybrid rice. Nongxue Nongbao 2, 14.Google Scholar
Lu, Y. F., Ma, R. R., Wang, X. Y., Li, X. N., Zhou, H. C., Zhang, Z. Y. & Hua, G. L. (2007). SSLP-based SSR fingerprinting and indica/japonica classification of Yongyou series hybrid. Chinese Journal of Rice Science 21, 443446.Google Scholar
Luo, L. J., Mei, H., Yu, X., Wang, Y., Zhong, D., Ying, C., Li, Z. & Paterson, A. H. (1999). Yield heterosis performance and their parental genetic diversity in rice. Chinese Journal of Rice Science 13, 610.Google Scholar
Luo, X. J., Wu, S., Tian, F., Xin, X. Y., Zha, X. J., Dong, X. X., Fu, Y. C., Wang, X. K., Yang, J. S. & Sun, C. Q. (2011). Identification of heterotic loci associated with yield-related traits in Chinese common wild rice (Oryza rufipogon Griff.). Plant Science 181, 1422.Google Scholar
Ma, R. R., Xu, D. H., Wang, X. Y., Yu, S. M., Jin, Q. Y., Ouyang, Y. N. & Zhu, L. F. (2007). Heterosis on plant morphology of Youyong6, an Indica-Japonica inter-subspecific super yielding hybrid rice. Chinese Journal of Rice Science 21, 281286.Google Scholar
McCouch, S. R., Declerck, G., Teytelman, L., Xu, Y., Lobos, K., Walton, M., Fu, B., Maghirang, R., Li, Z., Xing, Y., Zhang, Q., Kono, I., Yano, M., Schneider, D., Cartinhour, S., Ware, D. & Stein, L. (2002). Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research 9, 199207.Google Scholar
Moehring, A. J. (2011). Heterozygosity and its unexpected correlations with hybrid sterility. Evolution 65, 26212630.Google Scholar
Ndjiondjop, M. N., Semagn, K., Sie, M., Cissoko, M., Fatondji, B. & Jones, M. (2008). Molecular profiling of interspecific lowland rice populations derived from IR64 (Oryza sativa) and Tog5681 (Oryza glaberrima). African Journal of Biotechnology 7, 42194229.Google Scholar
Ndjiondjop, M. N., Futakuchi, K., Seck, P. A., Cisse, F., Bocco, R. & Fatondji, B. (2012). Morpho-agronomic evaluation of Oryza glaberrima accessions and interspecific Oryza sativa × Oryza glaberrima derived lines under drought conditions. African Journal of Agricultural Research 7, 25272538.Google Scholar
Nei, M. (1971). Interspecific gene differences and evolutionary time estimated from electrophoretic data on protein identity. American Naturalist 105, 385398.Google Scholar
Nei, M. (1972). Genetic distance between populations. American Naturalist 106, 283292.CrossRefGoogle Scholar
Qiu, S. Q., Liu, K., Jiang, J. X., Song, X., Xu, C. G., Li, X. H. & Zhang, Q. F. (2005). Delimitation of the rice wide compatibility gene S5n to a 40-kb DNA fragment. Theoretical and Applied Genetics 111, 10801086.Google Scholar
Sarla, N. & Swamy, B. P. M. (2005). Oryza glaberrima: a source of improvement of Oryza sativa . Current Science 89, 955963.Google Scholar
Semagn, K., Ndjiondjop, M. N., Lorieux, M., Cissoko, M., Jones, M. & McCouch, S. (2007). Molecular profiling of an interspecific rice population derived from a cross between WAB 56–104 (Oryza sativa) and CG 14 (Oryza glaberrima). African Journal of Biotechnology 6, 20142022.Google Scholar
Shen, S. Q. & Xue, Q. Z. (1996). Analysis of heterosis in Inter-subspecific hybrids F1 among different types of rice. Chinese Journal of Rice Science 10, 712.Google Scholar
Temnykh, S., Declerck, G., Lukashova, A., Lipovich, L., Cartinhou, S. & Mccouch, S. (2001). Computational and experimental analysis of microsatellities in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Research 11, 14411452.Google Scholar
Virmani, S. S. (1994). Heterosis and Hybrid Rice Breeding. Monographs in Theoretical and Applied Genetics 22. Manila, The Philippines: Springer-Verlag.CrossRefGoogle Scholar
Virmani, S. S. (1999). Exploitation of heterosis for shifting the yield frontier in rice. In The Genetics and Exploitation of Heterosis in Crops (Eds Coors, J. G. & Pandey, S.), pp. 423438. Madison, WI, USA: ASA, CSSA.Google Scholar
Virmani, S. S., Siddiq, E. A. & Muralidharan, K. (1994). Advances in Hybrid Rice Technology: Proceedings of the Third International Symposium on Hybrid Rice, 14–16 November 1996, Hyderabad, India. Manila, the Philippines: IRRI.Google Scholar
Wang, S. & Lu, Z. (2006). Genetic diversity among parental lines of Indica hybrid rice (Oryza sativa L.). Plant Breeding 125, 606612.CrossRefGoogle Scholar
Wang, Z., Yu, C., Liu, X., Liu, S., Yin, C., Liu, L., Lei, J., Jiang, L., Yang, C., Chen, L., Zhai, H. & Wan, J. (2012). Identification of Indica rice chromosome segments for the improvement of Japonica inbreds and hybrids. Theoretical and Applied Genetics 124, 13511364.Google Scholar
WARDA (2006). Celebrating 35 Years of Research Partnership: Africa Rice Center (WARDA)/NARS Cpollaboration. Report of the 5th Biennial Regional Consultative Meeting of the National Experts Committee (NEC V). Cotonou: Republic of Benin, June, 19–20. Cotonou, Benin: WARDA.Google Scholar
Xu, W., Virmani, S. S., Hernandez, J. E. & Sebastian, L. S. (2002). Genetic diversity in parental line and heterosis of the tropical rice hybrids. Euphytica 127, 139148.Google Scholar
Yang, Z. Y. & Liu, W. Y. (1991). Classification of the F1 intersubspecific hybrids between Indica and Japonica and its relation to the F1 hybrid vigor. Chinese Journal of Rice Science 5, 151156.Google Scholar
Yuan, L. P., Yang, Z. Y. & Yang, J. B. (1994). Hybrid rice in China. In Hybrid Rice Technology: New Development and Future Prospects (Ed. Virmani, S. S.), pp. 143147. Manila, The Philippines: International Rice Research Institute.Google Scholar
Zhang, X. Q., Wang, X. D., Jiang, P. D., Hua, S. J., Zhang, H. P. & Dutt, Y. (2010). Relationship between molecular marker heterozigosity and hybrid performance in intra- and interspecific hybrids of cotton. Plant Breeding 126, 385391.Google Scholar