Skip to main content Accessibility help
×
Home

Faecal index to estimate intake and digestibility in grazing sheep

  • D. B. DAVID (a1), C. H. E. C. POLI (a2), J. V. SAVIAN (a2), G. A. AMARAL (a3), E. B. AZEVEDO (a4), P. C. F. CARVALHO (a5) and C. M. MCMANUS (a2)...

Summary

The current research was carried out to evaluate the use of crude protein and fibre components in faeces for estimating intake and digestibility in sheep fed with pearl millet (Pennisetum americanum (L.) Leeke). The equations were developed from four trials in metabolism cages with 16 sheep in each trial. Each animal received a different quantity of millet leaves in the diet: 0·015, 0·020 and 0·025 dry matter (DM) as a proportion of live weight (LW) and ad libitum with at least 0·2 of daily feed refusals. Organic matter intake (OMI, g/day) was measured, through the difference between offer and refusals; total faeces were collected for 5 days, which was used to determine faecal crude protein (CPf, g/day and g/kg of organic matter (OM)), faecal neutral detergent fibre (NDFf, g/day and g/kg OM), faecal acid detergent fibre (ADFf, g/day and g/kg OM) and OM digestibility (OMD). Linear regression equations were calculated to determine the relationship between OMI and CPf (P<0·001, R2=0·90, relative prediction error (RPE=14·02%). A multiple linear equation was generated for OMI including CPf and NDFf (P<0·001, R2=0·94; RPE=9·25%). Hyperbolic (single and multiple) and exponential models were tested to estimate OMD, where the hyperbolic multiple model including CPf and NDFf showed lower RPE (3·90%). These equations for estimating OMI and OMD were evaluated on sheep grazing P. americanum fertilized with increasing levels of nitrogen (N) (50, 100, 200 and 400 kg N/ha), comparing measured and estimated OMI. The intake estimated by multiple regression (CP and NDFf) showed a higher R2 (0·98) and lower RPE (5·25%) than the simple (CPf only) linear equation (R2=0·94; RPE=20·45%). The results demonstrated the feasibility of using the faecal index generated in metabolism cages for estimating intake and digestibility in sheep grazing P. americanum.

Copyright

Corresponding author

*To whom all correspondence should be addressed. Email: cesar.poli@ufrgs.br

References

Hide All
AOAC. (1975). Official Methods of Analysis, 12th edn, Washington, DC: Association of Official Analytical Chemists.
Azevedo, E. B. (2011). Consumo e utilização de nutrientes por ovinos em pastagem de azevém anual. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Boval, M., Peyraud, J. L., Xandé, A., Aumont, G., Coppry, O. & Saminadin, G. (1996). Evaluation of faecal indicators to predict digestibility and voluntary intake of Dichanthium spp. by cattle. Annales de Zootechnie 45, 121134.
Boval, M., Archimède, H., Fleury, J. & Xandé, A. (2003). The ability of faecal nitrogen to predict digestibility for goats and sheep fed with tropical herbage. Journal of Agricultural Science, Cambridge 140, 443450.
Carvalho, P. C. F., Kozloski, G. V., Ribeiro Filho, H. M. N., Reffatti, M. V., Genro, T. C. M. & Euclides, V. P. B. (2007). Avanços metodológicos na determinação do consumo de ruminantes em pastejo. Revista Brasileira de Zootecnia 36 (Suppl.),151170.
Coates, D. B. & Penning, P. (2000). Measuring animal performance. In Field and Laboratory Methods for Grassland and Animal Production Research (Eds T'Mannetje, L. & Jones, R. M.), pp. 353402. Wallingford, UK: CABI.
Easley, J. F., Mccall, J. T., Davis, G. K. & Shirley, R. L. (1965). Analytical Methods for Feeds and Tissues. Gainesville, FL: Nutrition Laboratory, Department of Animal Science, University of Florida.
Fanchone, A., Boval, M., Lecomte, P. H. & Archimède, H. (2007). Faecal indices based on near infrared spectroscopy to assess intake, in vivo digestibility and chemical composition of the herbage ingested by sheep (crude protein, fibres and lignin content). Journal of Near Infrared Spectroscopy 15, 107113.
Fuentes-Pila, J., Delorenzo, M. A., Beede, D. K., Staples, C. R. & Holter, J. B. (1996). Evaluation of equations based on animal factors for predicting intake of lactating Holstein cows. Journal of Dairy Science 79, 15621571.
Fuentes-Pila, J., Ibañez, M., De Miguel, J. M. & Beede, D. K. (2003). Predicting average feed intake of lactating Holstein cows fed totally mixed rations. Journal of Dairy Science 86, 309323.
Hodgson, J. (2004). Measurement of herbage intake and ingestive behaviour in grazing animals: an introduction. In Herbage Intake Handbook, 2 edn (Ed. Penning, P. D.), pp. 1522. Reading, UK: The British Grassland Society.
Lancaster, R. J. (1949). Estimation of digestibility of grazed pasture from faeces nitrogen. Nature 163, 330331.
Lemaire, G., Da Silva, S. C., Agnusdei, M., Wade, M. & Hodgson, J. (2009). Interactions between leaf lifespan and defoliation frequency in temperate and tropical pastures. A review. Grass and Forage Science 64, 341353.
Lukas, M., Südekum, K.-H., Rave, H., Friedel, K. & Susenbeth, A. (2005). Relationship between fecal crude protein concentration and diet organic matter digestibility in cattle. Journal of Animal Science 83, 13321344.
Mott, G. O. & Lucas, H. L. (1952). The design, conduct, and interpretation of grazing trials on cultivated and improved pastures. In Proceedings of the 6th International Grassland Congress, 1952, Pennsylvania (Ed. Wagner, R. E.), pp. 13801385. Pennsylvania, USA: State College Press.
Peripolli, V., Prates, E. R., Barcellos, J. O. J. & Braccini Neto, J. (2011). Fecal nitrogen to estimate intake and digestibility in grazing ruminants. Animal Feed Science and Technology 163, 170176.
Rymer, C. (2000). The measurement of forage digestibility in vivo. In Forage Evaluation in Ruminant Nutrition (Eds Givens, D.I., Owen, E., Axford, R. F. E. & Omed, H. M.), pp. 113144. Wallingford, UK: CABI.
Sollenberger, L. E. & Burns, J. C. (2001). Canopy characteristics, ingestive behaviour and herbage intake in cultivated tropical grasslands. In Proceedings of the 19th International Grassland Congress, Piracicaba, Brazil (Eds Gomide, J. A., Mattos, W. R. S. & da Silva, S. C.), pp. 321327. Sao Pedro, Brazil: Brazilian Science Animal Husbandry, Piracicaba.
Van Soest, P. J. & Robertson, J. B. (1985). Analysis of Forages and Fibrous Foods – a Laboratory Manual for Animal Science. Ithaca, NY: Cornell University.
Wang, C. J., Tas, B. M., Glindemann, T., Rave, G., Schmidt, L., Weißbach, F. & Susenbeth, A. (2009). Fecal crude protein content as an estimate for the digestibility of forage in grazing sheep. Animal Feed Science and Technology 149, 199208.

Faecal index to estimate intake and digestibility in grazing sheep

  • D. B. DAVID (a1), C. H. E. C. POLI (a2), J. V. SAVIAN (a2), G. A. AMARAL (a3), E. B. AZEVEDO (a4), P. C. F. CARVALHO (a5) and C. M. MCMANUS (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed