Skip to main content Accessibility help

Effects of sample preparation on nitrogen degradability of pangola grass (Digitaria decumbens) and tropical tree legumes

  • G. Aumont (a1), G. Saminadin (a1), P. Cerneau (a1) and A. Xandé (a1)


The effects of particle size on the nitrogen degradability of four tropical forages were studied in 1991 in Guadeloupe. Samples of pangola grass (Digitaria decumbens) 22 and 47 days old, Gliricidia sepium and Leucaena leucocephala were prepared as follows: grasses were (1) freshly cut with scissors to 0·5–1·0 cm in length and frozen at – 18 °C; or for later study were dried at 80 °C and ground to pass a (2) 0·5 mm, (3) 10 mm or (4) 20 mm screen. Nitrogen degradability (ND) was determined by placing samples in nylon bags with two different pore sizes (25 and 46 μm) which were then put into the rumen of cows for 2, 4, 8, 16, 24 and 48 h. The kinetics of nitrogen degradation were examined using Ørskov's model. Particle losses through the nylon bags, dry matter (DM) and nitrogen solubility of the samples were also measured in vitro. The sample preparation and the type of forage were the main sources of variation in the rapidly degradable nitrogen fraction, the slowly degradable nitrogen fraction, the degradation rate, the potentially degradable nitrogen fraction and ND. Nitrogen degradability was 55·8,46·7, 640 and 46·5% for pangola grass (at 22 and 47 days regrowth), Gliricidia and Leucaena samples, respectively. Mean ND was 47·9, 59·4, 56·1 and 49·6% for freshly cut and 0·5, 1·0 and 2·0 mm dried ground samples, respectively. Sample preparation had little effect on nitrogen solubility. For samples dried and ground at 0·5 and 1·0 mm, particle losses were 18·8 and 15·0% of DM, respectively. The insoluble but degradable fraction was 60·8, 51·9, 42·5 and 42·7% for freshly cut and 0·5, 1·0 and 2·0 mm dried ground samples, respectively. The freshly cut material appeared to be suitable for the estimation of ND in tropical forages.



Hide All
Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Farnham Royal: Commonwealth Agricultural Bureaux.
Beever, D. E., Thomson, D. J. & Cammell, S. B. (1976). The digestion of frozen and dried grass by sheep. Journal of Agricultural Science, Cambridge 86, 443452.
Cerneau, P., Xandé, A. & Aumont, G. (1993). In situ degradation of four tropical forages. Annales de Zootechnie 42, 141.
Chadhokar, P. A. & Kantharaju, H. R. (1980). Effect of Gliricidia maculata on growth and breeding of Bannur ewes. Tropical Grasslands 14, 7882.
Chapman, P. G. & Norton, B. W. (1982). The effect of sample preparation on the digestion of chopped, masticated and ground siratro and pangola grass in nylon bags. Proceedings of the Australian Society of Animal Production 14, 580583.
Cooksley, D. G., Prinsen, J. H., Paton, C. J. & Pini, J. A. (1991). Performance of a beef cattle production system on native pasture using Leucaena leucocephala as a supplement. Livestock Production Science 28, 6572.
Kamoun, M. & Thewis, A. (1990). Influence du mode de conditionnement d'un fourrage vert sur sa composition chimique, la digestibilité in vitro de la matière organique et de la dégradabilité in sacco de l'azote dans le rumen. Reproduction Nutrition Développement (Supplement 2) 159160.
Kristensen, E. S., Moller, P. D. & Hvelplund, T. (1982). Estimation of the effective protein degradability in the rumen of cows using the nylon bag technique combined with the outflow rate. Acta Agriculturae Scandinavica 32, 123127.
Lindberg, J. E. (1981). The effect of sample size and sample structure on the degradation of dry matter, nitrogen and cell walls in nylon bags. Swedish Journal of Agricultural Research 11, 7176.
Lindberg, J. E. (1985). Estimation of rumen degradability of feed proteins with the in sacco technique and various in vitro methods: a review. Acta Agriculturae Scandinavica (Supplement) 25, 6497.
Makkar, H. P. S., Singh, B. & Negi, S. S. (1989). Relationship of rumen degradability with microbial colonization, cell wall constituents and tannin levels in some tree leaves. Animal Production 49, 299303.
Marquardt, W. (1963). An algorithm for least squares estimation of nonlinear parameters. Journal of the Society of Industrial and Applied Mathematics 11, 431441.
Michalet-Doreau, B. (1990). Influence de la nature de l'aliment sur l'importance des pertes en particules dans la mesure de la dégradabilité in sacco de l'azote des aliments. Reproduction Nutrition Développement (Supplement 2), 151152.
Michalet-Doreau, B. & Aufrère, J. (1990). Nouvelles méthodes d'estimation de la valeur alimentaire des fourrages. Fourrages 122, 189201.
Michalet-Doreau, B. & Cerneau, P. (1991). Influence of foodstuff particle size on in situ degradation of nitrogen in the rumen. Animal Feed Science and Technology 35, 6981.
Michalet-Doreau, B., Vérité, R. & Chapoutot, P. (1987). Methodologie de mesure de la dégradabilité in sacco de l'azote des aliments dans le rumen. Bulletin Technique du CRZV Theix, INRA 69, 57.
Nocek, J. E. (1985). Evaluation of specific variables affecting in situ estimates of ruminal dry matter and protein digestion. Journal of Animal Science 60, 13471358.
Ørskov, E. R. & McDonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, Cambridge 92, 499503.
Ould-Bah, M. Y. & Michalet-Doreau, B. (1988). Influence du traitement des fourrages verts sur la cinétique de dégradation in sacco de l'azote dans le rumen. Reproduction Nutrition Développement 28 (Supplement 1) 103104.
Parra, A., Combellas, J. & Dixon, R. (1984). Rumen degradability of some tropical feedstuffs. Tropical Animal Production 9, 196199.
Peyraud, J. L. (1990). Influence du mode de séchage et de la finesse de broyage des échantillons de fourrages sur l'estimation de la dégradabilite de l'azote dans le rumen. Reproduction Nutrition Développement (Supplement 2), 153154.
Sampath, K. T., Subba Rao, A. & Sampath, S. R. (1989). Ruminal protein degradability of certain feedstuffs determined by nylon bag technique. Indian Journal of Animal Sciences 59, 13041307.
Sas Institute (1987). SAS/STAT Guide for Personal Computers, Version 6 Edition. Cary, NC: SAS Institute.
Shaver, R. D., Nytes, A. J., Jones, B. A., Satter, L. D. & Jorgensen, N. A. (1984). Influence of forage particle length on in situ degradation of prebloom alfalfa hay. Journal of Animal Science 59 (Supplement 1), 295 (Abstract).
Teixeira, J. C., Evangelista, A. R., Fonseca, E. C., Fontes, C. jr & De Oliveira, A. I. G. (1991). Rumen in situ digestibility of dry matter (DM), neutral detergent fiber (NDF) and crude protein (CP), from different forage. Journal of Dairy Science 74 (Supplement 1), 182 (Abstract).
Van Keuren, R. W. & Heinemann, W. W. (1962). Study of a nylon bag technique for in vivo estimation of forage digestibility. Journal of Animal Science 21, 340345.
Vanhatalo, A. & Varvikko, T. (1989). Influence of sample preparation on the ruminal nylon bag degradation values of grass silage. Asian-Australasian Journal of Animal Science 2, 413415.
Vérité, R., Journet, M. & Jarrige, R. (1979). A new system for the protein feeding of ruminants: the PDI system. Livestock Production Science 6, 349367.
Vérité, R., Michalet-Doreau, B., Chapoutot, P., Peyraud, J. L. & Poncet, C. (1987). Révision du système des protéines digestibles dans l'intestin (PDI). Bulletin Technique du CRZV Theix, INRA 70, 1934.
Xandé, A., Garcia-Trujillo, R. & Caceres, O. (1989). Feeds of the humid tropics (West Indies). In Ruminant Nutrition, Recommended Allowances and Feed Tables (Ed. Jarrige, R.), pp. 347362. Paris: INRA.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed