Skip to main content Accessibility help
×
×
Home

The effects of dietary soybean isoflavone on immunity in Chinese yellow-feathered broilers challenged with infectious bursal disease virus

  • S. Q. Jiang (a1), Z. Y. Jiang (a1) (a2), J. L. Chen (a1), C. Zhu (a2), P. Hong (a1) and F. Chen (a1)...

Abstract

To investigate the effects of soybean isoflavone (SI) on immunity in infectious bursal disease virus (IBDV)-infected broilers, chicks were fed the same basal diet supplemented with 0 (non-infected control), 0 (infected control), 10, 20 or 40 mg/kg SI for 44 days. At 21 days old, chickens were inoculated with bursal infectious dose causing 50% morbidity of the IBDV BC 6/85 strain by the eye-drop and nasal route (except for non-infected controls). Results showed that, over 1–23 days post-infection (dpi), there was a significant interaction between SI supplementation level and time: high-level SI supplementation increased peripheral T lymphocyte proliferation, percentages of CD3+, CD4+ and CD8+ T lymphocytes, CD4+ to CD8+ ratio, serum concentrations of IgA, IgM and IgG, and IBDV antibody titres. Except for serum IgA and IgM, these variables increased over time with far higher values at 23 dpi than earlier. Compared with non-infected controls, IBDV inoculation decreased peripheral T lymphocyte proliferation at 3 dpi, percentages of CD3+, CD4+ and CD8+ T lymphocytes, and serum IgG, IgM concentration at 23 dpi, and increased IBDV antibody titres at 7, 15 and 23 dpi. Supplemental SI quadratically increased peripheral T lymphocyte proliferation, CD4+ to CD8+ ratio and serum IgA concentration at 3 dpi, percentages of CD3+, CD4+ and CD8+ T lymphocytes at 3 and 23 dpi, and serum IgM concentration and IBDV antibody titres at 23 dpi. These results indicate that dietary SI improved cellular and humoral immunity of IBDV-infected birds and may enhance resistance of Yellow-feathered broilers to infectious diseases.

Copyright

Corresponding author

Author for correspondence: Z. Y. Jiang, E-mail: jiangz28@qq.com

Footnotes

Hide All
*

These authors contributed equally to this work.

Footnotes

References

Hide All
Abdukalykova, ST, Zhao, X and Ruiz-Feria, CA (2008) Arginine and vitamin E modulate the subpopulations of T lymphocytes in broiler chickens. Poultry Science 87, 5055.
Balamurugan, V and Kataria, JM (2006) Economically important non-oncogenic immunosuppressive viral diseases of chicken-current status. Veterinary Research Communications 30, 541566.
Belcavello, L, Dutra, JCV, de Freitas, JV, Aranha, IP, Batitucci, M and do, CP (2012) Mutagenicity of ipriflavone in vivo and in vitro. Food and Chemical Toxicology 50, 9961000.
Biggs, PM (1985) Infectious animal disease and its control. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 310, 259274.
Butcher, GD and Miles, RD (2002) Interrelationship of Nutrition and Immunity. VM139. Gainesvill, FL, USA: University of Florida. Available at http://edis.ifas.ufl.edu/VM104 (Accessed 9 January 2018).
Cheng, ZG, Lin, YC, Yu, DQ, Jiang, SQ, Zhou, GL and Jiang, ZY (2005) Effects of daidzein on growth performance and its potential mechanism in finishing pigs. Acta Zoonutrimenta Sinica 17, 3034.
Collisson, EW, Pei, JW, Dzielawa, J and Seo, SH (2000) Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry. Developmental and Comparative Immunology 24, 187200.
Cooke, PS, Selvaraj, V and Yellayi, S (2006) Genistein, estrogen receptors, and the acquired immune response. Journal of Nutrition 136, 704708.
Curran, EM, Judy, BM, Newton, LG, Lubahn, DB, Rottinghaus, GE, Macdonald, RS, Franklin, C and Estes, DM (2004) Dietary soy phytoestrogens and ERα signalling modulate interferon gamma production in response to bacterial infection. Clinical & Experimental Immunology 135, 219225.
Donovan, SM, Andres, A, Mathai, RA, Kuhlenschmidt, TB and Kuhlenschmidt, MS (2009) Soy formula and isoflavones and the developing intestine. Nutrition Reviews 67, S192S200.
Feed Database in China (2016) Tables of feed composition and nutritive values in China- fifteenth edition. Chinese Feed 21, 3343.
Fussell, LW (1998) Poultry industry strategies for control of immunosuppressive diseases. Poultry Science 77, 11931196.
Guo, TL, White, KL, Brown, RD, Delclos, KB, Newbold, RR, Weis, C, Germolec, DR and McCay, JA (2002) Genistein modulates splenic natural killer cell activity, antibody-forming cell response, and phenotypic marker expression in F0 and F1 generations of Sprague-Dawley rats. Toxicology and Applied Pharmacology 181, 219227.
Kibenge, FS, Dhillon, AS and Russell, RG (1988) Biochemistry and immunology of infectious bursal disease virus. Journal of General Virology 69, 17571775.
Kim, IJ, You, SK, Kim, H, Yeh, H and Sharma, JM (2000) Characteristics of bursal T lymphocytes induced by infectious bursal disease virus. Journal of Virology 74, 88848892.
Klein, SL, Wisniewski, AB, Marson, AL, Glass, GE and Gearhart, JP (2002) Early exposure to genistein exerts long-lasting effects on the endocrine and immune systems in rats. Molecular Medicine 8, 742749.
Lee, LF, Sharma, JM, Nazerian, K and Witter, RL (1978) Suppression and enhancement of mitogen response in chickens infected with Marek's disease virus and the herpes virus of turkeys. Infection and Immunity 21, 474479.
Liu, DY, He, SJ, Liu, SQ, Tang, YG, Jin, EH, Chen, HL, Li, SH and Zhong, LT (2014) Daidzein enhances immune function in late lactation cows under heat stress. Animal Science Journal 85, 8589.
McNeal, MM, Barone, KS, Rae, MN and Ward, RL (1995) Effector functions of antibody and CD8+ cells in resolution of rotavirus infection and protection against reinfection. Virology 214, 387397.
Morimoto, M, Watanabe, T, Yamori, M, Takebe, M and Wakatsuki, Y (2009) Isoflavones regulate innate immunity and inhibit experimental colitis. Journal of Gastroenterology and Hepatology 24, 11231129.
Müller, H, Islam, MR and Raue, R (2003) Research on infectious bursal disease – the past, the present and the future. Veterinary Microbiology 97, 153165.
National Research Council (1994) Nutrient Requirements of Poultry, 9th rev. Edn. Washington, DC, USA: National Academies Press.
Powell, PC (1987) Immune mechanisms in infections of poultry. Veterinary Immunology and Immunopathology 15, 87113.
Raff, MC (1973) T and B lymphocytes and immune responses. Nature 242, 1923.
Rautenschlein, S, Yeh, H and Sharma, JM (2002 a) The role of T cells in protection by an inactivated infectious bursal disease virus vaccine. Veterinary Immunology and Immunopathology 89, 159167.
Rautenschlein, S, Yeh, H, Njenga, MK and Sharma, JM (2002 b) Role of intrabursal T cells in infectious bursal disease virus (IBDV) infection, T cells promote viral clearance but delay follicular recovery. Archives of Virology 147, 285304.
Saif, YM (1991) Immunosuppression induced by infectious bursal disease virus. Veterinary Immunology and Immunopathology 30, 4550.
Saif, YM (1998) Infectious bursal disease and hemorrhagic enteritis. Poultry Science 77, 11861189.
Seo, HS, Wang, L, Smith, R and Collisson, EW (1997) The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. Journal of Virology 71,78897894.
Sharma, JM, Kim, IJ, Rautenschlein, S and Yeh, H (2000) Infectious bursal disease virus of chickens: pathogenesis and immunosuppression. Developmental and Comparative Immunology 24, 223235.
Sivanandan, V and Maheswaran, SK (1980) Immune profile of infectious bursal disease. I. Effect of infectious bursal disease virus on peripheral blood T and B lymphocytes in chickens. Avian Diseases 24, 715725.
Sivanandan, V and Maheswaran, SK (1981) Immune profile of infectious bursal disease. III. Effect of infectious bursal disease virus on the lymphocyte responses to phytomitogens and on mixed lymphocyte reaction of chickens. Avian Diseases 25, 112120.
Tanimura, N and Sharma, JM (1997) Appearance of T cells in the bursa of Fabricius and cecal tonsils during the acute phase of infectious bursal disease virus infection in chickens. Avian Diseases 41, 638645.
van den Berg, TP (2000) Acute infectious bursal disease in poultry: a review. Avian Pathology 29, 175194.
Vervelde, L and Davison, TF (1997) Comparison of the in situ changes in lymphoid cells during infection with infectious bursal disease virus in chickens of different ages. Avian Pathology 26, 803821.
Wang, WQ, Higuchi, CM and Zhang, RQ (1997) Individual and combinatory effects of soy isoflavones on the in vitro potentiation of lymphocyte activation. Nutrition and Cancer 29, 2934.
Yeh, H, Rautenschlein, S and Sharma, JM (2002) Protective immunity against infectious bursal disease virus in chickens in the absence of virus-specific antibodies. Veterinary Immunology and Immunopathology 89, 149158.
Zhang, RQ, Li, YP and Wang, WQ (1997) Enhancement of immune function in mice fed high doses of soy daidzein. Nutrition and Cancer 29, 2428.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Agricultural Science
  • ISSN: 0021-8596
  • EISSN: 1469-5146
  • URL: /core/journals/journal-of-agricultural-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed