Skip to main content Accessibility help
×
×
Home

Effect of urea fertilization on biomass yield, chemical composition, in vitro rumen digestibility and fermentation characteristics of forage oat straw in Tibet of China

  • J. H. CUI (a1) (a2), H. J. YANG (a1), C. Q. YU (a3), S. BAI (a1), S. S. SONG (a2), T. T. WU (a1), W. SUN (a3), X. M. SHAO (a4) and L. S. JIANG (a5)...

Summary

The present study investigated the effects of different levels of urea nitrogen (N) fertilizer on nutrient accumulation, in vitro rumen gas production and fermentation characteristics of forage oat straw (FOS) from oats (Avena sativa L. ‘Qinghai 444’) grown in the Tibet region of China. Fertilizer, applied at seeding (day 1), stem elongation (days 52–54) and heading (days 63–67), increased plant height and prolonged the maturity stage of the plant by 4–11 days compared with the non-fertilized control. Oat plants were harvested at maturity at the node 3–4 cm above ground, and then separated into grains and FOS. Both FOS and grain yields increased quadratically with increasing N fertilization, and their theoretical maximums occurred at the N fertilizing rates of 439 and 385 kg/ha, respectively. Increases in N fertilization did not affect the hemicellulose content of FOS, but substantially promoted the accumulation of crude protein, cellulose and lignin, resulting in a decrease in the energy content available for metabolism. A 72-h incubation of FOS with rumen fluids from lactating cows showed that increasing N resulted in FOS that showed a slower fermentation rate, decreased in vitro dry matter disappearance and lower cumulative gas production, but unchanged fermentation gas composition. Nitrogen fertilization increased the final pH in culture fluids and decreased the microbial volatile fatty acid (VFA) production. The molar proportions of acetate and propionate were not affected, but molar propionate proportion decreased linearly with increasing urea fertilization, and consequently, the ratio of lipogenic (e.g., acetate and butyrate)-to-glucogenic acids (propionate) tended to increase. In brief, increasing urea N fertilization promoted the growth of forage oats and increased the biomass yield as well as the crude protein and cellulose content of FOS. Considering the negative effect of increased lignin content on nutrient digestibility and total VFA production, the suggested range of urea N fertilization is 156–363 kg N/ha for forage oats planted in Tibet to retain the nutritive value of FOS in the rumen.

Copyright

Corresponding author

*To whom all correspondence should be addressed. Email: yang_hongjian@sina.com and Shaoxm@cau.edu.cn

References

Hide All
Allen, L. J., Harbers, L. H., Schalles, R. R., Owensby, C. E. & Smith, E. F. (1976). Range burning and fertilizing related to nutritive value of bluestem grass. Journal of Range Management 29, 306308.
Anderson, P. V., Kerr, B. J., Weber, T. E., Ziemer, C. J. & Shurson, G. C. (2012). Determination and prediction of digestible and metabolizable energy from chemical analysis of corn coproducts fed to finishing pigs. Journal of Animal Science 90, 12421254.
AOAC (1999). Official Methods of Analysis, 16th edn. Arlington, VA, USA: AOAC International.
Bartl, K., Gamarra, J., Gómez, C. A., Wettstein, H. R., Kreuzer, M. & Hess, H. D. (2009). Agronomic performance and nutritive value of common and alternative grass and legume species in the Peruvian highlands. Grass and Forage Science 64, 109121.
Bélanger, G., Gastal, F. & Lemaire, G. (1992). Growth analysis of a tall fescue sward fertilized with different rates of nitrogen. Crop Science 32, 13711376.
Brinkman, M. A. & Rho, Y. D. (1984). Response of three oat cultivars to N fertilizer. Crop Science 24, 973977.
Cassab, G. I. (1998). Plant cell wall proteins. Annual Review of Plant Physiology and Plant Molecular Biology 49, 281309.
Chanthakhoun, V., Wanapat, M. & Berg, J. (2012). Level of crude protein in concentrate supplements influenced rumen characteristics, microbial protein synthesis and digestibility in swamp buffaloes (Bubalus bubalis). Livestock Science 144, 197204.
Cherney, J. H. & Marten, G. C. (1982). Small grain crop forage potential: I. biological and chemical determinants of quality, and yield. Crop Science 22, 227231.
China Standard NY/T 34 (2004). Feeding Standard of Dairy Cattle (in Chinese). China Nongye Hang Ye Biaozhun/ Tuijian-34. Beijing, People's Republic of China: China Agriculture Publisher.
Close, W. H. & Menke, K. H. (1986). Selected Topics in Animal Nutrition: a Manual Prepared for the 3rd Hohenheim Course on Animal Nutrition in the Tropics and Semi-Tropics. Stuttgart, Germany: Hohenheim University.
Coblentz, W. K., Jokela, W. E. & Bertram, M. G. (2014). Cultivar, harvest date, and nitrogen fertilization affect production and quality of fall oat. Agronomy Journal 106, 20752086.
Collins, M., Brinkman, M. A. & Salman, A. A. (1990). Forage yield and quality of oat cultivars with increasing rates of nitrogen fertilization. Agronomy Journal 82, 724728.
Contreras-Govea, F. E. & Albrecht, K. A. (2006). Forage production and nutritive value of oat in autumn and early summer. Crop Science 46, 23822386.
Daşci, M. & Comakli, B. (2011). Effects of fertilization on forage yield and quality in range sites with different topographic structure. Turkish Journal of Field Crops 16, 1522.
Duan, A. M. & Wu, G. X. (2005). Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dynamics 24, 793807.
Fondevila, M., BarriosUrdaneta, A., Balcells, J. & Castrillo, C. (2002). Gas production from straw incubated in vitro with different levels of purified carbohydrates. Animal Feed Science and Technology 101, 115.
France, J. & Dijkstra, J. (2005). Volatile fatty acid production. In Quantitative Aspects of Ruminant Digestion and Metabolism (Eds Dijkstra, J., Forbes, J. M. & France, J.), pp. 157175. Wallingford, UK: CABI.
France, J., Dijkstra, J., Dhanoa, M. S., Lopez, S. & Bannink, A. (2000). Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. British Journal of Nutrition 83, 143150.
Fukushima, R. S. & Dehority, B. A. (2000). Feasibility of using lignin isolated from forages by solubilization in acetyl bromide as a standard for lignin analyses. Journal of Animal Science 78, 31353143.
Garcıa-Martınez, R., Ranilla, M. J., Tejido, M. L. & Carro, M. D. (2005). Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage: concentrate ratio. British Journal of Nutrition 94, 7177.
Getachew, G., Robinson, P. H., DePeters, E. J. & Taylor, S. J. (2004). Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Animal Feed Science and Technology 111, 5771.
Givens, D. I., Davies, T. W. & Laverick, R. M. (2004). Effect of variety, nitrogen fertiliser and various agronomic factors on the nutritive value of husked and naked oats grain. Animal Feed Science and Technology 113, 169181.
González Ronquillo, M., Fondevila, M., Barrios Urdaneta, A. & Newman, Y. (1998). In vitro gas production from buffel grass (Cenchrus ciliaris L.) fermentation in relation to the cutting interval, the level of nitrogen fertilisation and the season of growth. Animal Feed Science and Technology 72, 1932.
Hogan, J. P. & Weston, R. H. (1969). The digestion of pasture plants by sheep. III. The digestion of forage oats varying in maturity and in the content of protein and soluble carbohydrate. Australian Journal of Agricultural Research 20, 347363.
Islam, M. R., Garcia, S. C. & Horadagoda, A. (2012). Effects of residual nitrogen, nitrogen fertilizer, sowing date and harvest time on yield and nutritive value of forage rape. Animal Feed Science and Technology 177, 5264.
Jouany, J. P. (2006). Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows. Animal Reproduction Science 96, 250264.
Leber, D., Holawe, F. & Häusler, H. (1995). Climatic classification of the Tibet Autonomous Region using multivariate statistical methods. GeoJournal 37, 451472.
Lemus, R., Brummer, E. C., Burras, C. L., Moore, K. J., Barker, M. F. & Molstad, N. E. (2008). Effects of nitrogen fertilization on biomass yield and quality in large fields of established switchgrass in southern Iowa, USA. Biomass and Bioenergy 32, 11871194.
Liu, X. & Chen, B. (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology 20, 17291742.
Liu, Y., Bao, Q., Duan, A., Qian, Z. A. & Wu, G. (2007). Recent progress in the impact of the Tibetan Plateau on climate in China. Advances in Atmospheric Sciences 24, 10601076.
Long, R. J., Dong, S. K., Wei, X. H. & Pu, X. P. (2005). The effect of supplementary feeds on the bodyweight of yaks in cold season. Livestock Production Science 93, 197204.
Lovett, D. K., Bortolozzo, A., Conaghan, P., O'Kiely, P. & O'Mara, F. P. (2004). In vitro total and methane gas production as influenced by rate of nitrogen application, season of harvest and perennial ryegrass cultivar. Grass and Forage Science 59, 227232.
Makkar, H. P. & Becker, K. (1999). Purine quantification in digesta from ruminants by spectrophotometric and HPLC methods. British Journal of Nutrition 81, 107112.
Malhi, S. S., Foster, A. & Gill, K. S. (2003). Harvest time and N fertilization effects on forage yield and quality of quackgrass (Elytrigia repens L.) in northeastern Saskatchewan. Canadian Journal of Plant Science 83, 779784.
Marshall, H. G., Kolb, F. L. & Roth, G. W. (1987). Effects of nitrogen fertilizer rate, seeding rate, and row spacing on semidwarf and conventional height spring oat. Crop Science 27, 572575.
May, W. E., Mohr, R. M., Lafond, G. P., Johnston, A. M. & Stevenson, F. C. (2004). Effect of nitrogen, seeding date and cultivar on oat quality and yield in the eastern Canadian prairies. Canadian Journal of Plant Science 84, 10251036.
Menke, K. H. & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28, 755.
Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D. & Schneider, W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro . Journal of Agricultural Science, Cambridge 93, 217222.
Monteiro, A. L. G. (1996). Forragicultura no Paraná. Londrina, Brazil: CPAF.
Morris, H. D. & Gardner, F. P. (1958). The effect of nitrogen fertilization and duration of clipping period on forage and grain yields of oats, wheat, and rye. Agronomy Journal 50, 454457.
Mould, F. L. & Ørskov, E. R. (1983). Manipulation of rumen fluid pH and its influence on cellulolysis in sacco, dry matter degradation and the rumen microflora of sheep offered either hay or concentrate. Animal Feed Science and Technology 10, 114.
Mould, F. L., Ørskov, E. R. & Mann, S. O. (1983). Associative effects of mixed feeds. I. effects of type and level of supplementation and the influence of the rumen fluid pH on cellulolysis in vivo and dry matter digestion of various roughages. Animal Teed Science and Technology 10, 1530.
Nass, H. G., Kunelius, H. T. & Suzuki, M. (1975). Effects of nitrogen application on barley, oats and triticale grown as forage. Canadian Journal of Plant Science 55, 4953.
NRC (1996). Nutrient Requirements for Beef Cattle, 7th edn. Washington, D.C.: National Academy Press.
Obara, Y., Dellow, D. W. & Nolan, J. V. (1991). The influence of energy-rich supplements on nitrogen kinetics in ruminants. In Physiological Aspects of Digestion and Metabolism in Ruminants: Proceedings of the Seventh International Symposium on Ruminant Physiology (Eds Tsuda, T., Sasaki, Y. & Kawashima, R.), pp. 515539. San Diego, CA, USA: Academic Press.
Ohm, H. W. (1976). Response of 21 oat cultivars to nitrogen fertilization. Agronomy Journal 68, 773775.
Ørskov, E. R. (1975). Manipulation of rumen fermentation for maximum food utilization. World Review of Nutrition & Dietetics 22, 152182.
Redaelli, R., Scalfati, G., Ciccoritti, R., Cacciatori, P., De Stefanis, E. & Sgrulletta, D. (2014). Effects of genetic and agronomic factors on grain composition in oats. Cereal Research Communications 43, 144154.
Restelatto, R., Pavinato, P. S., Sartor, L. R. & Paixão, S. J. (2014). Production and nutritional value of sorghum and black oat forages under nitrogen fertilization. Grass and Forage Science 69, 693704.
Rezende, A. S. C., Freitas, G. P., Costa, M. L. L., Fonseca, M. G., Lage, J. & Leal, H. V. Jr (2012). Nutritional composition of white oat (Avena sativa L.) with different levels of dry matter for use in the diet of horses. In Forages and Grazing in Horse Nutrition (Eds Saastamoinen, M., Fradinho, M. J., Santos, A. S. & Miraglia, N.), pp. 275277. Forages and Grazing in Horse Nutrition vol. 132. Wageningen, NL: Wageningen Academic Publishers.
Satter, L. D. & Slyter, L. L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro . British Journal of Nutrition 32, 199208.
Talbot, J. M. & Treseder, K. K. (2012). Interactions among lignin, cellulose, and nitrogen drive litter chemistry–decay relationships. Ecology 93, 345354.
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.
Verdouw, H., Van Echteld, C. J. A. & Dekkers, E. M. J. (1978). Ammonia determination based on indophenol formation with sodium salicylate. Water Research 12, 399402.
Wang, S., Wang, Y., Schnug, E., Haneklaus, S. & Fleckenstein, J. (2002). Effects of nitrogen and sulphur fertilization on oats yield, quality and digestibility and nitrogen and sulphur metabolism of sheep in the Inner Mongolia Steppes of China. Nutrient Cycling in Agroecosystems 62, 195202.
Waramit, N., Moore, K. J. & Heggenstaller, A. H. (2011). Composition of native warm-season grasses for bioenergy production in response to nitrogen fertilization rate and harvest date. Agronomy Journal 103, 655662.
Wolf, D. & Opitz von Boberfeld, W. (2003). Effects of nitrogen fertilization and date of utilization on the quality and yield of tall fescue in winter. Journal of Agronomy and Crop Science 189, 4753.
Yang, H. J., Zhuang, H., Meng, X. K., Zhang, D. F. & Cao, B. H. (2014). Effect of melamine on in vitro rumen microbial growth, methane production and fermentation of Chinese wild rye hay and maize meal in binary mixtures. Journal of Agricultural Science, Cambridge 152, 686696.
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.
Zhang, D. F. & Yang, H. J. (2011). In vitro ruminal methanogenesis of a hay-rich substrate in response to different combination supplements of nitrocompounds; pyromellitic diimide and 2-bromoethanesulphonate. Animal Feed Science and Technology 163, 2032.
Zhao, B. P., Ren, P., Liu, J. H. & Zhao, M. L. (2013). Nitrogen accumulation, retranslocation and partitioning in oats (Avena L.) as affected by different water supply and nitrogen fertilization. Advanced Materials Research 610, 29632967.
Zinn, R. A. & Owens, F. N. (1986). A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Canadian Journal of Animal Science 66, 157166.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Agricultural Science
  • ISSN: 0021-8596
  • EISSN: 1469-5146
  • URL: /core/journals/journal-of-agricultural-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed