Skip to main content Accessibility help

Effect of Fe deficiency on alfalfa plants grown in the presence of Pseudomonas

  • D. CAMEJO (a1), M. C. MARTÍ (a1), I. MARTÍNEZ-ALCALÁ (a1), J. I. MEDINA-BELLVER (a2), S. MARQUÉS (a2) and A. JIMÉNEZ (a1)...


Alfalfa is a model plant defined as less sensitive than others to iron (Fe) deficiency. In the present work, some mechanisms induced in low Fe availability conditions were studied, including the effect of inoculation of alfalfa seeds with Pseudomonas putida. The effect of different Fe contents in the nutrient solution on the growth parameters was evaluated at 3 and 10 days, observing that low Fe conditions promoted biomass accumulation. Activation in the mechanisms of Fe acquisition, through acidification of the media and an increase in the ferric chelate reductase (FCR) activity, was observed in the absence of Fe at 10 days. The presence of P. putida KT2442 in the rhizosphere eliminated FCR activation through the excretion of siderophores. The effect of the siderophores on the modulation of FCR activity was demonstrated using a ppsD mutant strain, unable to segregate them, observing an activation of the activity similar to that observed in the absence of the bacteria. This, together with the demonstrated mechanisms to increase Fe availability, contributed to the conclusion that alfalfa can be used for recovery programmes of soils with low Fe availability.


Corresponding author

*To whom all correspondence should be addressed. Email:


Hide All
Abril, M. A., Michan, C., Timmis, K. N. & Ramos, J. L. (1989). Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. Journal of Bacteriology 171, 67826790.
Alcaraz, C. F., Hellín, E., Sevilla, F. & Martínez-Sánchez, F. (1985). Influence of the leaf iron contents on the ferredoxin levels in citrus plants. Journal of Plant Nutrition 8, 603611.
Almansa, M. S., Palma, J. M., Yáñez, J., Del Río, L. A. & Sevilla, F. (1991). Purification of an iron-containing superoxide dismutase from a citrus plant, Citrus limonum R. Free Radical Research Communications 12–13, 319328.
Camejo, D., Martí, M. C., Nicolás, E., Alarcón, J. J., Jiménez, A. & Sevilla, F. (2007). Response of superoxide dismutase isoenzymes in tomato plants (Lycopersicon esculentum) during thermo-acclimation of the photosynthetic apparatus. Physiologia Plantarum 131, 367377.
Carrillo-Castañeda, G., Juarez Muñoz, J., Ramon Peralta-Videa, J., Gómez, E. & Gardea-Torresdey, J. L. (2002). Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. Journal of Plant Nutrition 26, 18011814.
Cesco, S., Rombola, A. D., Tagliavini, M., Varanini, Z. & Pinton, R. (2006). Phytosiderophores released by graminaceous species promote 59Fe-uptake in citrus. Plant and Soil 287, 223233.
Chaney, R. L., Brown, J. C. & Tiffin, L. O. (1972). Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiology 50, 208213.
Connolly, E. L., Campbell, N. H., Grotz, N., Prichard, C. L. & Guerinot, M. L. (2003). Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiology 133, 11021110.
Dasgan, H. Y., Römheld, V., Cakmak, I. & Abak, K. (2002). Physiological root responses of iron deficiency susceptible and tolerant tomato genotypes and their reciprocal F-1 hybrids. Plant and Soil 241, 97104.
Dell'Orto, M., Santi, S., De Nisi, P., Cesco, S., Varanini, Z., Zocchi, G. & Pinton, R. (2000). Development of Fe-deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H+-ATPase activity. Journal of Experimental Botany 51, 695701.
Del Río, L. A., Sevilla, F., Sandalio, L. M. & Palma, J. M. (1991). Nutritional effect and expression of SODs: induction and gene expression; diagnostics; prospective protection against oxygen toxicity. Free Radical Research Communications 12–13, 819827.
Dertz, E. A., Stintzi, A. & Raymond, K. N. (2006). Siderophore-mediated iron transport in Bacillus subtilis and Corynebacterium glutamicum. Journal of Biological Inorganic Chemistry 11, 10871097.
Devescovi, G., Aguilar, C., Majolini, M. B., Marugg, J., Weisbeek, P. & Venturi, V. (2001). A siderophore peptide synthetase gene from plant-growth-promoting Pseudomonas putida WCS358. Systematic and Applied Microbiology 24, 321330.
Espinosa-Urgel, M., Kolter, R. & Ramos, J. L. (2002). Root colonization by Pseudomonas putida: love at first sight. Microbiology 148, 341343.
Franklin, F. C., Bagdasarian, M., Bagdasarian, M. M. & Timmis, K. N. (1981). Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. Proceedings of the National Academy of Sciences USA 78, 74587462.
Gogorcena, Y., Abadía, J. & Abadía, A. (2000). Induction of in vivo root ferric chelate reductase activity in fruit tree rootstock. Journal of Plant Nutrition 23, 921.
Guerinot, M. L. & Yi, Y. (1994). Iron-nutritious, noxious, and not readily available. Plant Physiology 104, 815820.
Hell, R. & Stephan, U. W. (2003). Iron uptake, trafficking and homeostasis in plants. Planta 216, 541551.
Hellín, E., Llorente, S., Piquer, V. & Sevilla, F. (1984). Actividad peroxidasa inducida como indicator de la efectividad de compuestos organicos de hierro en la corrección de deficiencia de Fe en el limonero (Peroxidase activity as indicator of efficiency of organic compounds of iron for the correction of iron deficiency in lemon trees). Agrochimica 28, 432441.
Hellín, E., Ureña, R., Sevilla, F. & Alacaraz, C. F. (1987). Comparative study on the effectiveness of several iron compounds in the iron chlorosis correction in Citrus plants. Journal of Plant Nutrition 10, 411421.
Hellín, E., Hernández-Cortes, J. A., Piqueras, A., Olmos, E. & Sevilla, F. J. (1995). The influence of the iron content on the superoxide dismutase activity and chloroplast ultrastructure of Citrus limon. In Iron Nutrition in Soils and Plant (Ed. Abadia, J.), pp. 247254. Dordecht, The Netherlands: Kluwer Academic Publishers.
Hinsinger, P., Plassard, C., Tang, C. & Jaillard, B. (2003). Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints. Plant and Soil 248, 4359.
Hoagland, D. R. & Arnon, D. I. (1950). The Water-culture Method for Growing Plants without Soil. California Agricultural Experiment Station Circular 347. Berkeley, CA, USA: University of California.
Hoel, B. O. & Solhaug, K. A. (1998). Effect of irradiance on chlorophyll estimation with the Minolta SPAD-502 leaf chlorophyll meter. Annals of Botany 82, 389392.
Houlden, A., Timms-Wilson, T. M., Day, M. J. & Bailey, M. J. (2008). Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiology Ecology 65, 193201.
Iturbe-Ormaetxe, I., Morán, J. F., Arrese-Igor, C., Gogorcena, Y., Klucas, R. V. & Becana, M. (1995). Activated oxygen and antioxidant defences in iron-deficient pea plants. Plant Cell and Environment 18, 421429.
Ji, C., Juarez-Hernández, R. E. & Miler, M. J. (2012). Exploiting bacterial iron acquisition: siderophore conjugates. Future Medicinal Chemistry 4, 297313.
Jin, C. W., Chen, W. W., Meng, Z. B. & Zheng, S. J. (2008). Iron deficiency-induced increase of root branching contributes to the enhanced root ferric chelate reductase activity. Journal of Integrative Plant Biology 50, 15571562.
Jin, C. W., Li, G. X., Yu, X. H. & Zheng, S. J. (2010). Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere. Annals of Botany 105, 835841.
Kirk, J. L., Klironomos, J. N., Lee, H. & Trevors, J. T. (2005). The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environmental Pollution 133, 455465.
Martí, M. C., Camejo, D., Fernández-García, N., Rellán-Álvarez, R., Marques, S., Sevilla, F. & Jiménez, A. (2009). Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants. Journal of Hazardous Materials 171, 879885.
Martínez-Alcalá, I., Walker, D. J. & Bernal, M. P. (2010). Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation. Ecotoxicology and Environmental Safety 73, 595602.
Masalha, J., Kosegarten, H., Elmaci, O. & Mengel, K. (2000). The central role of microbial activity for iron acquisition in maize and sunflower. Biology and Fertility of Soils 30, 433439.
Matthijs, S., Laus, G., Meyer, J. M., Abbaspour-Tehrani, K., Schäfer, M., Budzikiewicz, H. & Cornelis, P. (2009). Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440. Biometals 22, 951964.
Meyer, J. M. (2000). Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Archives of Microbiology 174, 135142.
Miller, G. W., Huang, I. J., Welkie, G. W. & Pushnik, J. C. (1995). Function of iron in plants with special emphasis on chloroplasts and photosynthetic activity. In Iron Nutrition in Soils and Plant (Ed. Abadia, J.), pp. 1928. Dordecht, The Netherlands: Kluwer Academic Publishers.
Mordukhava, E. A., Skvortsova, N. P., Kochetkov, V. V., Dubeikovskii, A. N. & Boronin, A. M. (1991). Synthesis of the phytohormone indole-3-acetic acid by rhizosphere bacteria of the genus Pseudomonas. Microbiology 60, 345349.
Morrissey, J. & Guerinot, M. L. (2009). Iron uptake and transport in plants: The good, the bad, and the ionome. Chemical Reviews 109, 45534567.
Negishi, T., Nakanishi, H., Yazaki, J., Kishimoto, N., Fujii, F., Shimbo, K., Yamamoto, K., Sakata, K., Sasaki, T., Kikuchi, S., Mori, S. & Nishizawa, N. K. (2002). cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant Journal 30, 8394.
Peralta-Videa, J. R., De La Rosa, G., González, J. H. & Gardea-Torresdey, J. L. (2004). Effects of the growth stage on the heavy metal tolerance of alfalfa plants. Advances in Environmental Research 8, 679685.
Podile, A. R. & Krishna Kishore, G. (2006). Plant growth-promoting rhizobacteria. In Plant-Associated Bacteria (Ed. Gnanamanickam, S. S.), pp. 195230. Dordrecht, The Netherlands: Springer.
Rabotti, G. & Zocchi, G. (1994). Plasma membrane-bound H+-ATPase and reductase activities in Fe-deficient cucumber roots. Physiologia Plantarum 90, 779785.
Richens, D. T. (2005). Ligand substitution reactions at inorganic centers. Chemical Reviews 105, 19612002.
Robinson, N. J., Procter, C. M., Connolly, E. L. & Guerinot, M. L. (1999). A ferric-chelate reductase for iron uptake from soils. Nature 397, 694697.
Romano, J. D. & Kolter, R. (2005). Pseudomonas-Saccharomyces interactions: influence of fungal metabolism on bacterial physiology and survival. Journal of Bacteriology 187, 940948.
Römheld, V. (1991). The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant and Soil 130, 127134.
Schmidt, W. (2003). Iron solutions: acquisition strategies and signaling pathways in plants. Trends in Plant Science 8, 188193.
Sevilla, F., Del Río, L. A. & Hellín, E. (1984). Superoxide dismutases from a Citrus plant: presence of two iron-containing isoenzymes in leaves of lemon trees. Journal of Plant Physiology 116, 381387.
Sharma, A., Johri, B. N., Sharma, A. K. & Glick, B. R. (2003). Plant growth-promoting bacterium Pseudomonas sp strain GRP(3) influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biology and Biochemistry 35, 887894.
Tomasi, N., Kretzschmar, T., Espen, L., Weisskopf, L., Fuglsang, A. T., Palmgren, M. G., Neumann, G., Varanini, Z., Pinton, R., Martinoia, E. & Cesco, S. (2009). Plasma membrane H+-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin. Plant Cell and Environment 32, 465475.
Vanacker, H., Sandalio, L. M., Jiménez, A., Palma, J. M., Corpas, F. J., Meseguer, V., Gómez, M., Sevilla, F., Leterrier, M., Foyer, C. H. & Del Río, L. A. (2006). Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition. Journal of Experimental Botany 57, 17351745.
Vert, G., Grotz, N., Dedaldechamp, F., Gaymard, F., Guerinot, M. L., Briat, J. F. & Curie, C. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14, 12231233.
Wang, M. Y., Xia, R. X., Hu, L. M., Dong, T. & Wu, Q. S. (2007). Arbuscular mycorrhizal fungi alleviate iron deficient chlorosis in Poncirus trifoliata L. Raf under calcium bicarbonate stress. Journal of Horticultural Science and Biotechnology 82, 776780.
Weber, G., Von Wiren, N. & Hayen, H. (2008). Investigation of ascorbate-mediated iron release from ferric phytosiderophores in the presence of nicotianamine. Biometals 21, 503513.
Zocchi, G. & Cocucci, S. (1990). Fe uptake mechanism in Fe-efficient cucumber roots. Plant Physiology 92, 908911.

Effect of Fe deficiency on alfalfa plants grown in the presence of Pseudomonas

  • D. CAMEJO (a1), M. C. MARTÍ (a1), I. MARTÍNEZ-ALCALÁ (a1), J. I. MEDINA-BELLVER (a2), S. MARQUÉS (a2) and A. JIMÉNEZ (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed