Skip to main content Accessibility help
×
Home

Control of barley yellow dwarf virus in minimum-till and conventional-till autumn-sown cereals by insecticide seed and foliar spray treatments

  • T. F. KENNEDY (a1) and J. CONNERY (a1)

Summary

The control of barley yellow dwarf virus (BYDV) and its aphid vectors in minimum tillage (MT) and conventionally tilled (CT) winter barley by insecticide seed and foliar spray treatments was investigated in 2001, 2002 and 2003. Similar investigations were undertaken on winter wheat in 2004, 2005 and 2006. Aphids numbers in autumn and BYDV in spring on barley and wheat were significantly lower on MT relative to CT crops, in two of the six seasons. An insecticide spray at Zadoks growth stage (GS) 25 significantly reduced aphids and virus in both MT and CT crops in three of the six seasons of the study. An additional spray at GS 22 provided no benefit. Aphids were significantly fewer in three of the six seasons on crops grown from insecticide treated seeds, relative to untreated seeds. Both MT and CT barley sprayed at GS 25 had significantly fewer aphids than the seed treatment in one of the three seasons. Seed-treated MT and CT barley had significantly less BYDV than controls but significantly more than crops sprayed at GS 25. CT wheat grown from insecticide-treated seed had significantly less BYDV than controls. Overall, CT barley grown from insecticide-treated seed had 6-fold more BYDV than the sprayed crop, while untreated barley had 22-fold more than the spray treatment. In MT barley, the comparable values were 3- and 10-fold respectively. BYDV was almost exclusively the MAV strain. The grain yield for insecticide-sprayed CT barley was significantly greater in two of three seasons than that for untreated plots. In general, MT and CT barley receiving an insecticide spray had greater grain yield than barley grown from insecticide-treated seed, with differences being significant in one of three seasons. It is concluded that BYDV in MT and CT cereals is better controlled by applying a pyrethroid insecticide spray between GS 23 and 25, in autumn, than by treating the seed with a nitroguanidine-type insecticide. In MT crops, a single spray between GS 23 and 25 will give effective control of MAV-type BYDV.

Copyright

Corresponding author

*To whom all correspondence should be addressed. Email: tom.kennedy@teagasc.ie

References

Hide All
Allmaras, R. R. & Dowdy, R. H. (1985). Conservation tillage systems and their adoption in the United States. Soil and Tillage Research 5, 197222.
Barrett, D. W. A., Northwood, P. J. & Horellou, A. (1981). The influence of rate and timing of autumn applied pyrethroid and carbamate insecticide sprays on the control of barley yellow dwarf virus in English and French winter cereals. In Proceedings of the 1981 British Crop Protection Conference – Pests and Diseases, vol. 2, pp. 405412. Farnham, UK: BCPC.
Bayon, F. & Ayrault, J. P. (1990). Barley yellow dwarf virus: losses, virus-plant relationships, chemical control of vectors. In World Perspectives on Barley Yellow Dwarf (Ed. Burnett, P. A.), pp. 471472. Mexico: CIMMYT.
Bluett, D. J. & Birch, P. A. (1992). Barley yellow dwarf virus (BYDV) control with imidacloprid seed treatment in the United Kingdom. Pflanzenschutz-Nachrichten Bayer 45, 455490.
Burton, R. L. & Krenzer, E. G. Jr (1985). Reduction of greenbug (Homoptera: Aphididae) populations by surface residues in wheat tillage studies. Journal of Economic Entomology 78, 390394.
Cannell, R. Q. (1985). Reduced tillage in North-West Europe – A review. Soil and Tillage Research 5, 129177.
Conry, M. J. & Ryan, P. (1967). Soils of County Carlow. Soil Survey Bulletin No. 17. Dublin: National Soil Survey of Ireland – An Foras Taluntais.
Cowger, C., Weisz, R., Anderson, J. M. & Horton, J. R. (2010). Maize debris increases barley yellow dwarf virus severity in North Carolina winter wheat. Agronomy Journal 102, 688695.
Davies, D. B. & Finney, J. B. (2002). Reduced Cultivations for Cereals: Research, Development and Advisory Needs under Changing Economic Circumstances. HGCA (Home-Grown Cereals Authority Project No. 2485 UK) Research Review No. 48. London: HGCA.
Dean, G. J. (1973). Distribution of aphids in spring cereals. Journal of Applied Ecology 10, 447462.
Dean, G. J. (1974). The four dimensions of cereal aphids. Annals of Applied Biology 77, 7478.
Dietrick, E. J. (1961). An improved back pack motor fan for suction sampling of insect populations. Journal of Economic Entomology 54, 394395.
Fortune, T., Kennedy, T., Mitchell, B., Dunne, B., Murphy, K., Connery, J. & Grace, J. (2005). Reduced cultivations – update from Oak Park experiments. In National Tillage Conference Proceedings, 2005. pp. 1834. Oak Park, Carlow, Ireland: Crops Research Centre.
Gianoli, E. (2000). Competition in cereal aphids (Homoptera: Aphididae) on wheat plants. Environmental Entomology 29, 213219.
Gildow, F. E. & Rochow, W. F. (1983). Barley yellow dwarf in California: vector competence and luteovirus identification. Plant Disease 67, 140143.
Gourmet, C., Kolb, F. L., Smyth, C. A. & Pedersen, W. L. (1996). Use of imidacloprid as a seed-treatment insecticide to control barley yellow dwarf virus (BYDV) in oats and wheat. Plant Disease 80, 136141.
Gray, S. M., Bergstrom, G. C., Vaughan, R., Smith, D. M. & Kalb, D. W. (1996). Insecticidal control of cereal aphids and its impact on the epidemiology of barley yellow dwarf luteoviruses. Crop Protection 15, 687697.
Henry, M., George, S., Arnold, G. M., Dedryver, C. A., Kendall, D. A., Robert, Y. & Smith, B. D. (1993). Occurrence of barley yellow dwarf virus (BYDV) isolates in different farmland habitats in Western France and South-West England. Annals of Applied Biology 123, 315329.
Hesler, L. S. & Berg, R. K. (2003). Tillage impacts cereal-aphid (Homoptera: Aphididae) infestations in spring small grains. Journal of Economic Entomology 96, 17921797.
Hobbs, P. R. (2007). Conservation agriculture: what is it and why is it important for future sustainable food production. Journal of Agricultural Science, Cambridge 145, 127137.
Kendall, D. A. & Smith, B. D. (1981). Yield benefit from autumn control of aphids and barley yellow dwarf virus on winter barley. In Proceedings 1981 British Crop Protection Conference – Pests and Diseases, pp. 217221. Farnham, UK: BCPC.
Kendall, D. A., Chinn, N. E., Glenn, D. M., Wiltshire, C. W., Winstone, L. & Tidboald, C. (1995). Effects of soil management on cereal pests and their natural enemies. In Ecology and Integrated Farming Systems (Eds Glenn, D. M., Greaves, M. P. & Anderson, H. M.), pp. 83102. London: John Wiley & Sons Ltd.
Kendall, D. A., Chinn, N. E., Smith, B. D., Tidboald, C., Winstone, L. & Western, N. M. (1991). Effects of straw disposal and tillage on spread of barley yellow dwarf virus in winter barley. Annals of Applied Biology 119, 359364.
Kennedy, T. F. (1994). The ecology of Bembidion obtusum (Ser.) (Coleoptera: Carabidae) in winter wheat fields in Ireland. Biology and Environment: Proceedings of the Royal Irish Academy 94B, 3340.
Kennedy, T. F. & Connery, J. (2001). Barley yellow dwarf virus in winter barley in Ireland: yield loss and timing of autumn aphicides in controlling the MAV-strain. Irish Journal of Agricultural and Food Research 40, 5570.
Kennedy, T. F. & Connery, J. (2005). Grain yield reduction in spring barley due to barley yellow dwarf virus and aphid feeding. Irish Journal of Agriculture and Food Research 44, 111128.
Kennedy, T. F. & Connery, J. (2006). An evaluation of seed-pellet insecticides in a precision drilled crop of sugar beet. Irish Journal of Agricultural and Food Research 45, 211222.
Kennedy, T. F., McDonald, J. G., Connery, J. & Purvis, G. (2010). A comparison of the occurrence of aphids and barley yellow dwarf virus in minimum-till and conventional-till autumn-sown cereals. Journal of Agricultural Science, Cambridge 148, 407419.
Knaust, H.-J. & Poehling, H.-M. (1992). Studies of the action of imidacloprid on grain aphids and their efficiency to transmit BYD virus. Pflanzenschutz-Nachrichten Bayer 45, 381408.
Kocmánková, E., Trnka, M., Eitzinger, J., Dubrovský, M., Štěpánek, P., Semerádová, D., Balek, J., Skalák, P., Farda, A., Jurock, J. and Žulud, Z. (2011). Climate change and Agriculture. Estimating the impact of climate change on the occurrence of selected pests at high spatial resolution: a novel approach. Journal of Agricultural Science, Cambridge 149, 185195.
Lucas, J. A. (2011). Advances in plant disease and pest management. Journal of Agricultural Science, Cambridge 149 (Supp. 1), 91114.
McDonald, J. G. (2007). Functional significance of biodiversity; studies on the ecology of cereal aphids, predatory arthropods and the incidence of BYDV. PhD Thesis, National University of Ireland, Dublin.
McGrath, P. F. & Bale, J. S. (1989). Cereal aphids and the infectivity index for barley yellow dwarf virus (BYDV) in northern England. Annals of Applied Biology 114, 429442.
McGrath, P. F. & Bale, J. S. (1990). The effects of sowing date and choice of insecticide on cereal aphids and barley yellow dwarf virus epidemiology in northern England. Annals of Applied Biology 117, 3143.
McKirdy, S. J. & Jones, R. A. C. (1996). Use of imidacloprid and newer generation synthetic pyrethroids to control the spread of barley yellow dwarf luteovirus in cereals. Plant Disease 80, 895901.
McKirdy, S. J., Jones, R. A. C. & Nutter, F. W. (2002). Quantification of yield losses caused by barley yellow dwarf virus in wheat and oats. Plant Disease 86, 769773.
Miles, E. J., Bluett, D. J. & Mann, D. H. (2001). The influence of seed rate on the efficacy of imidacloprid seed treatment against BYDV in winter cereals. In Seed Treatment: Challenges and Opportunities. 2001 BCPC Symposium Proceedings No. 76, February 26–27 Wishaw, Scotland (Ed. Biddle, A. J.), pp. 4752. Farnham, UK: BCPC.
Plumb, R. T. (1974). Properties and isolates of barley yellow dwarf virus. Annals of Applied Biology 77, 8791.
Plumb, R. T. (1977). Aphids and virus control on cereals. In Proceedings of the 1977 British Crop Protection Conference – Pests and Diseases, vol. 3, pp. 903913.
Plumb, R. T. (1983). Barley yellow dwarf virus – a global problem. In Plant Virus Epidemiology (Eds Plumb, R. T. & Tresh, J. M.), pp. 185198. Oxford, UK: Blackwell Scientific Publications.
Plumb, R. T. (1995). Epidemiology of barley yellow dwarf in Europe. In Barley Yellow Dwarf – 40 Years of Progress (Eds D'Arcy, C. J. & Burnett, P. A.), pp. 107127. St. Paul, MN: APS Press.
Power, A. G. & Gray, S. M. (1995). Aphid transmission of barley yellow dwarf viruses: interactions between viruses, vectors and host plants. In Barley Yellow Dwarf – 40 Years of Progress (Eds D'Arcy, C. J. & Burnett, P. A.), pp. 259289. St. Paul, MN: APS Press.
Prior, R. N. B. (1975). Key for the Field Identification of Apterous and Alate Cereal Aphids with Photographic Illustrations. London: MAFF.
Quisenberry, S. S., Schrotzko, D. J., Lamb, P. F. & Young, F. L. (2000). Insect distribution in a spring pea–winter wheat–spring barley crop rotation system. Journal of Entomological Science 35, 327333.
Qureshi, J. A. & Michaud, J. P. (2005). Interactions among three species of cereal aphids simultaneously infesting wheat. Journal of Insect Science 5: 13. Available online at: http://www.insectscience.org/5.13 (verified 27 April 2011).
Rochow, W. F. (1960). Transmission of barley dwarf virus acquired from liquid extracts by aphids feeding through membranes. Virology 12, 223232.
Rochow, W. F. (1969). Biological properties of four isolates of barley yellow dwarf virus. Phytopathology 59, 15801589.
Rochow, W. F. (1970). Barley Yellow Dwarf Virus. Descriptions of Plant Viruses no. 32. Kew, Surrey, UK: Commonwealth Mycological Institute and Association of Applied Biologists.
Royer, T. A., Giles, K. L., Nyamanzi, T., Hunger, R. M., Krenzer, E. G., Elliott, N. C., Kindler, S. D. & Payton, M. (2005). Economic evaluation of the effects of planting date and application rate of imidacloprid for management of cereal aphids and barley yellow dwarf in winter wheat. Journal of Economic Entomology 98, 95102.
SAS (2004). User's Guide, Version 9.1. Cary, NC: SAS Institute Inc.
Sempruch, C., Starczewski, J. & Tkaczuk, A. (2007). Wplyw systemu uprawy pszenzyta ozimego na liczebnosca populacji mszyc zbozowych (Influence of winter triticale tillage system on abundance of cereal aphids). Postępy w Ochronie Roślin/Progress in Plant Protection 47, 367370.
Stroyan, H. L. G. (1952). The identification of aphids of economic importance. Plant Pathology 1, 914, 42–48, 92–99, 123–129.
Taylor, L. R., Palmer, J. M. P., Dupuch, M. J., Cole, J. & Taylor, M. S. (1981). A handbook for the rapid identification of alate aphids of Great Britain and Europe. In Euraphid – Rothamsted 1980 (Ed. Taylor, L. R.), pp. 1171. Harpenden, Herts, UK: Rothamsted Experimental Station.
Tottman, D. R., Makepeace, R. J. & Broad, H. (1979). An explanation of the decimal code for the growth stages of cereals, with illustrations. Annals of Applied Biology 93, 221234.
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.

Related content

Powered by UNSILO

Control of barley yellow dwarf virus in minimum-till and conventional-till autumn-sown cereals by insecticide seed and foliar spray treatments

  • T. F. KENNEDY (a1) and J. CONNERY (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.