Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-30T04:33:04.626Z Has data issue: false hasContentIssue false

Combined conservation of jack bean and velvet bean with sorghum: evaluation of lab-scale silages and in vitro assessment of their nutritive value

Published online by Cambridge University Press:  15 April 2014

R. LIMA-OROZCO
Affiliation:
Department of Veterinary Medicine and Zootechny, Universidad Central ‘Marta Abreu’ de Las Villas (UCLV), Carretera a Camajuaní km 6 ½, 54830 Santa Clara, Cuba UCLV, Centro de Investigaciones agropecuarias (CIAP), Carretera a Camajuaní km 6 ½, 54830 Santa Clara, Cuba Ghent University, LANUPRO, Proefhoevestraat 10, 9090 Melle, Belgium
I. VAN DAELE
Affiliation:
Ghent University, LANUPRO, Proefhoevestraat 10, 9090 Melle, Belgium
U. ÁLVAREZ-HERNÁNDEZ
Affiliation:
UCLV, Centro de Investigaciones agropecuarias (CIAP), Carretera a Camajuaní km 6 ½, 54830 Santa Clara, Cuba Department of Agronomy, Universidad Central ‘Marta Abreu’ de Las Villas (UCLV), Carretera a Camajuaní km 6 ½, 54830 Santa Clara, Cuba
V. FIEVEZ*
Affiliation:
Ghent University, LANUPRO, Proefhoevestraat 10, 9090 Melle, Belgium
*
*To whom all correspondence should be addressed. Email: veerle.fievez@ugent.be

Summary

The potential of ensiled sorghum–soybean as a ruminant feed has already been demonstrated; however, alternatives for soybean should be considered because other legumes such as jack bean (JB; Canavalia ensiformis (L.) DC.) and velvet bean (VB; Mucuna pruriens (L.) DC) might produce better yields under tropical conditions. First, the possibility for a qualitative conservation of these legumes in combination with sorghum was studied using lab-scale silages. Furthermore, the potential of additional molasses as a source of water-soluble carbohydrates (WSC) and a microbial inoculant (BIOPRANAL) to improve silage quality were assessed. As sorghum or legume tannins may influence the silage nutritive value, their importance was assessed through the addition of polyethylene glycol (PEG), which reduces tannin activity. Therefore, 25 treatments per legume–sorghum combination were created according to a central composite design. An acceptable silage quality was reached when at least half of the fresh biomass consisted of sorghum in combination with at least 15 g of additional WSC/kg fresh material. The nutritive value of mixed silages as well as pure sorghum silage in combination with dry jack beans was determined through in vitro digestibility in the rumen and small intestine. Polyethylene glycol increased the in vitro production of short-chain fatty acids, ammonia (NH3) concentrations and effective rumen dry matter and crude protein degradability for both mixed silages, indicating that tannins reduced rumen degradability. The latter action could be positive as the amount of digestible bypass protein increased when no PEG was added in the silo. Propionate and valerate proportions were increased through PEG addition to sorghum–JB and sorghum–VB silages, respectively, suggesting that the nature of the tannins differ between these legumes.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agbede, J. O. & Aletor, V. A. (2005). Studies of the chemical composition and protein quality evaluation of differently processed Canavalia ensiformis and Mucuna pruriens seed flours. Journal of Food Composition and Analysis 18, 89103.CrossRefGoogle Scholar
Ajayi, F. T., Akande, S. R., Adegbite, A. A. & Idowu, B. (2009). Assessment of seven under-utilized grain legume foliages as feed resources for ruminants. Livestock Research for Rural Development 21, Article #149, 1–8 pp Available online from: http://www.lrrd.org/lrrd21/9/ajay21149.htm (accessed 7 January 2014).Google Scholar
AOAC (1995). Official Methods of Analysis, 16th edn. Arlington, VA, USA: Association of Official Analytical Chemists.Google Scholar
Bagheripour, E., Rouzbehan, Y. & Alipour, D. (2008). Effects of ensiling, air-drying and addition of polyethylene glycol on in vitro gas production of pistachio by-products. Animal Feed Science and Technology 146, 327336.Google Scholar
Ben Salem, H., Nefzaoui, A., Ben Salem, L. & Tisserand, J. L. (1999). Intake, digestibility, urinary excretion of purine derivatives and growth by sheep given fresh, air-dried or polyethylene glycol-treated foliage of Acacia cyanophylla Lindl. Animal Feed Science and Technology 78, 297311.CrossRefGoogle Scholar
Broderick, G. A. & Kang, J. H. (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science 63, 6475.Google Scholar
Castro-Montoya, J., De Campeneere, S., Van Ranst, G. & Fievez, V. (2012). Interactions between methane mitigation additives and basal substrates on in vitro methane and VFA production. Animal Feed Science and Technology 176, 4760.Google Scholar
Chikagwa-Malunga, S. K., Adesogan, A. T., Sollenberger, L. E., Badinga, L. K., Szabo, N. J. & Littell, R. C. (2009). Nutritional characterization of Mucuna pruriens: 1. Effect of maturity on the nutritional quality of botanical fractions and the whole plant. Animal Feed Science and Technology 148, 3450.CrossRefGoogle Scholar
Contreras, E., Marín Ch., D. & Viera, J. (1989). Evaluación ecofisiologica de cultivos asociados. I. Canavalia – sorgo [Ecophisiology assessement of intercropped crops. I. Jack bean–sorghum] . Agronomía Tropical 39, 2344.Google Scholar
Cullinson, A. E. (1960). A simple, effective type of miniature silo for conducting silage investigations. Journal of Animal Science 19, 198202.Google Scholar
Danner, H., Holzer, M., Mayrhuber, E. & Braun, R. (2003). Acetic acid increases stability of silage under aerobic conditions. Applied and Environmental Microbiology 69, 562567.Google Scholar
Díaz, M. F. (2000). Producción y caracterización de forrajes y granos de leguminosas temporales para la alimentación animal [Production and characterization of forages and grains from temporary legumes as animal feed]. Ph.D. Thesis, Instituto de Ciencia Animal, Universidad Agraria de La Habana, Cuba.Google Scholar
EC (2009). Determination of crude ash. Commission Regulation no. L152/2009 of 26.02.2009. Official Journal of European Commission L54, 50.Google Scholar
El Hag, M. G., Vetter, R. L., Kenealy, M. D. & Smith, R. J. (1982). Evaluation of a model laboratory silo. Journal of Dairy Science 65, 250258.CrossRefGoogle Scholar
Hassim, H. A., Lourenço, M., Goel, G., Vlaeminck, B., Goh, Y. M. & Fievez, V. (2010). Effect of different inclusion levels of oil palm fronds on in vitro rumen fermentation pattern, fatty acid metabolism and apparent biohydrogenation of linoleic and linolenic acid. Animal Feed Science and Technology 162, 155158.Google Scholar
Heinritz, S. N., Martens, S. D., Avila, P. & Hoedtke, S. (2012). The effect of inoculant and sucrose addition on the silage quality of tropical forage legumes with varying ensilability. Animal Feed Science and Technology 174, 201210.Google Scholar
Jiménez, P. A., Cortés, R. H. & Ortiz, G. S. (2005). Rendimiento forrajero y calidad del ensilaje de canavalia en monocultivo y asociada con maíz [Forage yield and ensiling quality of a monoculture of Jack bean and intercropped Jack bean-maize] . Acta Agronómica 54, 3136.Google Scholar
Kaitho, R. J., Umunna, N. N., Nsahlai, I. V., Tamminga, S. & van Bruchem, J. (1998). Nitrogen in browse species: ruminal degradability and post-ruminal digestibility measured by mobile nylon bag and in vitro techniques. Journal of the Science of Food and Agriculture 76, 488498.Google Scholar
Kondo, M., Kita, K. & Yokota, H.-O. (2004). Feeding value to goats of whole-crop oat ensiled with green tea waste. Animal Feed Science and Technology 113, 7181.Google Scholar
Lima, R., Díaz, R. F., Castro, A. & Fievez, V. (2011 a). Digestibility, methane production and nitrogen balance in sheep fed ensiled or fresh mixtures of sorghum–soybean forage. Livestock Science 141, 3646.Google Scholar
Lima, R., Díaz, R. F., Castro, A., Hoedtke, S. & Fievez, V. (2011 b). Multifactorial models to assess responses to sorghum proportion, molasses and bacterial inoculant on in vitro quality of sorghum–soybean silages. Animal Feed Science and Technology 164, 161173.Google Scholar
Lima, R., Lourenço, M., Díaz, R. F., Castro, A. & Fievez, V. (2010). Effect of combined ensiling of sorghum and soybean with or without molasses and lactobacilli on silage quality and in vitro rumen fermentation. Animal Feed Science and Technology 155, 122131.CrossRefGoogle Scholar
Lima-Orozco, R., Castro-Alegría, A. & Fievez, V. (2013). Ensiled sorghum and soybean as ruminant feed in the tropics, with emphasis on Cuba. Grass and Forage Science 68, 2032.Google Scholar
Makkar, H. P. S. (2003). Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Ruminant Research 49, 241256.Google Scholar
Marin-Cárdenas, A., García, A., Herrera, N. & Gómez, L. (2005). Registro de Marca BIOPRANAL y Diseño para Distinguir Productos en las Clases 5 y 31 (Mark Registry of BIOPRANAL and Design for Distinguish Products of Class 5 & 31). Request Mark # 2004-0226. Resolution # 750/2005. 22 February 2005. Havana, Cuba: Cuban Office of Industrial Property.Google Scholar
Mbuthia, E. W. & Gachuiri, C. K. (2003). Effect of inclusion of Mucuna pruriens and Dolichos lablab forage in napier grass silage on silage quality and on voluntary intake and digestibility in sheep. Tropical and Subtropical Agroecosystems 1, 123128.Google Scholar
McCune, N. M., González, Y. R., Alcántara, E. A., Martínez, O. F., Fundora, C. O., Arzola, N. C., Cairo, P. C., D'Haese, M., DeNeve, S. & Hernández, F. G. (2011). Global questions, local answers: soil management and sustainable intensification in diverse socioeconomic contexts of Cuba. Journal of Sustainable Agriculture 35, 650670.Google Scholar
McDonald, P., Henderson, A. R. & Heron, S. J. E. (1991). The Biochemistry of Silage. Aberystwyth, UK: Chalcombe Publications.Google Scholar
Ogunji, J. O., Wirth, M. & Osuigwe, D. I. (2003). Nutrient composition of some tropical legumes capable of substituting fish meal in fish diets. Journal of Agriculture and Rural Development in the Tropics and Subtropics 104, 143148.Google Scholar
Ojeda, F. (1986). Estudio de los aditivos químicos para la conservación como ensilajes de cuatro gramíneas tropicales (Study of chemical additives to conservation as silage of four tropical grasses) . Ph.D. Thesis, Cuba: Instituto Superior de Ciencias Agropecuarias de La Habana.Google Scholar
Ojeda, F., Cáceres, O. & Esperance, M. (1991). Sistema de evaluación para ensilajes tropicales (Evaluation system for tropical silages). In Conservación de Forrajes (Eds López Tapanes, R. V., Pereira Pérez, N., Loidi Ramos, R. & Pérez Navarrete, A.), pp. 1565. Ciudad de La Habana, Cuba: Pueblo y Educación.Google Scholar
Ørskov, E. R. & McDonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, Cambridge 92, 499503.Google Scholar
Sridhar, K. R. & Seena, S. (2006). Nutritional and antinutritional significance of four unconventional legumes of the genus Canavalia – a comparative study. Food Chemistry 99, 267288.Google Scholar
St-Pierre, N. R. & Weiss, W. P. (2009). Technical note: designing and analyzing quantitative factorial experiments. Journal of Dairy Science 92, 45814588.CrossRefGoogle ScholarPubMed
‘t Mannetje, L. (2000). Introduction to the conference on silage making in the tropics. In Silage Making in the Tropics with Particular Emphasis on Smallholders (Ed. ‘t Mannetje, L.), Paper 1.0. FAO Plant Production and Protection Paper 161. Rome, Italy: FAO. Available online from: http://www.fao.org/docrep/005/x8486e/x8486e03.htm#bm03 (accessed 7 January 2014).Google Scholar
Vadivel, V. & Janardhanan, K. (2000). Nutritional and anti-nutritional composition of velvet bean: an under-utilized food legume in South India. International Journal of Food Sciences and Nutrition 51, 279287.Google Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.Google Scholar
Vlaeminck, B., Fievez, V., Cabrita, A. R. J., Fonseca, A. J. M. & Dewhurst, R. J. (2006). Factors affecting odd- and branched-chain fatty acids in milk: a review. Animal Feed Science and Technology 131, 389417.Google Scholar
Supplementary material: File

Lima-Orozco Supplementary Material

Supplementary Material

Download Lima-Orozco Supplementary Material(File)
File 204.8 KB