Skip to main content Accessibility help

Application of a kinetic model to describe phosphorus metabolism in pigs fed a diet with a microbial phytase

  • R. S. DIAS (a1) (a2), S. LOPEZ (a3), J. A. MOREIRA (a2), M. SCHULIN-ZEUTHEN (a1), D. M. S. S. VITTI (a2), E. KEBREAB (a4) and J. FRANCE (a1)...


The objective of the current study was to apply the Vitti–Dias model to investigate phosphorus (P) metabolism in growing pigs fed a diet supplemented with microbial phytase. The basal diet contained maize, defatted rice bran, vegetable oil, soybean meal, limestone, salt and a vitamin and mineral mix. There was no inorganic P in the diet and phytase was added at levels of 253, 759, 1265 and 1748 phytase units (PU)/kg of feed. The compartmental model included four pools of P: (1) gut lumen, (2) plasma, (3) bone and (4) soft tissue. A single dose of 32P was administered, and specific radioactivity was measured in plasma, faeces, bone and soft tissue (muscle, heart, liver and kidney) at different times post-dosing for calculation of P flows between pools. Total P absorbed showed a negative relationship with total P excreted in faeces and was strongly correlated with bone P retention, suggesting that absorbed P was channelled to bone to address its physiological growth. Average efficiency of metabolic utilization of absorbed P was estimated to be 0·94, with 0·52 g/g of total net P balance being accreted in bone and the rest in soft tissue (including muscle and some vital organs). The Vitti–Dias model provided suitable representation of P interchange between compartments (in particular, flows between gut and plasma and partitioning of available P between bone and soft tissue), resulting in estimates of P flows comparable with values calculated from balance data.


Corresponding author

*To whom all correspondence should be addressed. Email:


Hide All
Ajakaiye, A., Fan, M. Z., Archbold, T., Hacker, R. R., Forsberg, C. W. & Phillips, J. P. (2003). Determination of true digestive utilization of phosphorus and the endogenous phosphorus outputs associated with soybean meal for growing pigs. Journal of Animal Science 81, 27662775.
Anugwa, F. O. I., Varel, V. H., Dickson, J. S., Pond, W. G. & Krook, L. P. (1989). Effects of dietary fiber and protein concentration on growth, feed efficiency, visceral organ weights and large intestine microbial populations of swine. Journal of Nutrition 119, 879886.
Association of Official Analytical Chemists. (1995). Official Methods of Analysis of AOAC, 16th edn.Arlington, VA: Association of Official Analytical Chemists International.
Bedford, M. R. & Schulze, H. (1998). Exogenous enzymes for pigs and poultry. Nutrition Research Reviews 11, 91–114.
Brady, S. M., Callan, J. J., Cowan, D., McGrane, M. & O'Doherty, J. V. (2002). Effect of phytase inclusion and calcium/phosphorus ratio on the performance and nutrient retention of grower–finisher pigs fed barley/wheat/soya bean meal-based diets. Journal of Science and Food Agriculture 82, 17801790.
Brumm, M. C. (2001). Phytase in swine diets. 2001 Nebraska Swine Report, pp. 47. Lincoln, NE: University of Nebraska. Available online at
Cromwell, G. L. (1979). Availability of phosphorus in feedstuffs for swine. Proceedings of the Distillers Feed Conference 34, 4052.
Cromwell, G. L., Coffey, R. D., Monegue, H. J. & Randolph, J. H. (1995 a). Efficacy of low-activity, microbial phytase in improving the bioavailability of phosphorus in corn–soybean meal diets for pigs. Journal of Animal Science 73, 449456.
Cromwell, G. L., Coffey, R. D., Parker, G. R., Monegue, H. J. & Randolph, J. H. (1995 b). Efficacy of a recombinant-derived phytase in improving the bioavailability of phosphorus in corn–soybean meal diets for pigs. Journal of Animal Science 73, 20002008.
Dias, R. S., Kebreab, E., Vitti, D. M. S. S., Roque, A. P., Bueno, I. C. S. & France, J. (2006). A revised model for studying phosphorus and calcium kinetics in growing sheep. Journal of Animal Science 84, 27872794.
Dias, R. S., Kebreab, E., Vitti, D. M. S. S., Portilho, F. P., Louvandini, H. & France, J. (2007). Phosphorus kinetics in lambs fed different levels of dicalcium phosphate. Journal of Agricultural Science, Cambridge 145, 509516.
Düngelhoef, M., Rodehutscord, M., Spiekers, H. & Pfeffer, E. (1994). Effects of supplemental microbial phytase on availability of phosphorus contained in maize, wheat and triticale to pigs. Animal Feed Science and Technology 49, 110.
Dutra, W. M.JR., Ferreira, A. S., Donzele, J. L., Euclydes, R. F., Tarouco, J. U. & Cardoso, L. L. (2001). Predição de curvas de crescimento de tecidos de fêmeas suínas por intermédio da função alométrica estendida. Revista Brasileira de Zootecnia – Brazilian Journal of Animal Science 30, 10071014.
Fernández, J. A. (1995). Calcium and phosphorus metabolism in growing pigs. I. Absorption and balances studies. Livestock Production Science 41, 233241.
Figueredo, A. V., Fialho, E. T., Vitti, D. M. S. S., Lopes, J. B., Silva Filho, J. C., Teixeira, A. S. & Lima, J. A. F. (2000). Ação da fitase sobre a disponibilidade biológica do fósforo, por intermédio da técnica de diluição isotópica, em dietas com farelo de arroz integral para suínos. Revista Brasileira de Zootecnia – Brazilian Journal of Animal Science 29, 177182.
Fiske, C. H. & Subbarow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry 66, 375400.
Gomes, P. C., Rostagno, H. S., Pereira, J. A. A., Costa, P. M. A. & Lima, J. A. F. (1989). Exigência de fósforo total e disponível para suínos na fase de crescimento. Revista Brasileira de Zootecnia – Brazilian Journal of Animal Science 18, 232239.
Han, Y. M., Yang, F., Zhou, A. G., Miller, E. R., Ku, P. K., Hogberg, M. G. & Lei, X. G. (1997). Supplemental phytase of microbial and cereal sources improve dietary phytate phosphorus utilization by pigs from weaning through finishing. Journal of Animal Science 75, 10171025.
International Atomic Energy Agency (IAEA). (1979). Laboratory Training Manual on the Use of Nuclear Techniques in Animal Research. Technical Report Series No. 193. Vienna, Austria: IAEA.
Johansen, K. & Poulsen, H. D. (2003). Substitution of inorganic phosphorus in pig diets by microbial phytase supplementation – a review. Pig News and Information 24, 77N82N.
Jongbloed, A. W. (1987). Phosphorus in the feeding of pigs: effect of diet on the absorption and retention of phosphorus by growing pigs. Ph.D. dissertation, Wageningen Agricultural University, The Netherlands.
Kemme, P. A., Jongbloed, A. W., Mroz, Z. & Beynen, A. C. (1997). The efficacy of Aspergillus niger phytase in rendering phytate phosphorus available for absorption in pigs is influenced by pig physiological status. Journal of Animal Science 75, 21292138.
Kemme, P. A., Schlemmer, U., Mroz, Z. & Jongbloed, A. W. (2006). Monitoring the stepwise phytate degradation in the upper gastrointestinal tract of pigs. Journal of Science of Food and Agriculture 86, 612622.
Kerr, B. J., McKeith, F. K. & Easter, R. A. (1995). Effect on performance and carcass characteristics of nursery to finisher pigs fed reduced crude protein, amino acid-supplemented diets. Journal of Animal Science 73, 433440.
Ketaren, P. P., Batterham, E. S., White, E., Farrell, D. J. & Milthorpe, B. K. (1993). Phosphorus studies in pigs. 1. Available phosphorus requirements of grower/finisher pigs. British Journal of Nutrition 70, 249268.
Kies, A. K., Gerrits, W. J. J., Schrama, J. W., Heetkamp, M. J. W., Van Der Linden, K. L., Zandstra, T. & Verstegen, M. W. A. (2005). Mineral absorption and excretion as affected by microbial phytase, and their effect on energy metabolism in young piglets. Journal of Nutrition 135, 11311138.
Lofgreen, G. P. & Kleiber, M. (1953). The availability of the phosphorus in alfalfa hay. Journal of Animal Science 12, 366371.
Matsui, T., Nakagawa, Y., Tamura, A., Watanabe, C., Fujita, K., Nakajima, T. & Yano, H. (2000). Efficacy of yeast phytase in improving phosphorus biovailability in a corn–soybean meal-based diet for growing pigs. Journal of Animal Science 78, 9499.
Nascimento Filho, V. F. & Lobão, A. O. (1977). Detecção de P-32 em amostras de origem animal e vegetal por efeito Cerenkov, cintilação líquida e detector GM. Boletim Ciêntifico, 48. Piracicaba, Brazil: CENA.
National Research Council. (1998). Nutrient Requirement of Swine. 10th revised edn, Washington, DC: National Academy Press.
Qian, H., Kornegay, E. T. & Conner, D. E. JR. (1996). Adverse effects of wide calcium:phosphorus ratios on supplemental phytase efficacy for weanling pigs fed two dietary phosphorus levels. Journal of Animal Science 74, 12881297.
Rodehutscord, M., Haverkamp, R. & Pfeffer, E. (1998). Inevitable losses of phosphorus in pigs, estimated from balance data using diets deficient in phosphorus. Archives of Animal Nutrition 51, 2738.
Rodehutscord, M., Faust, M. & Pfeffer, E. (1999). The course of phosphorus excretion in growing pigs fed continuously increasing phosphorus concentrations after a phosphorus depletion. Archives of Animal Nutrition 52, 323334.
Rostagno, H. S., Albino, L. F. T., Donzele, J. L., Gomes, P. C., Ferreira, A. S., Oliveira, R. F. & Lopes, D. C. (2000). Tabelas Brasileiras para Aves e Suínos: Composição de Alimentos e Exigências Nutricionais (Brazilian Tables for Poultry and Swine: Feed Composition and Nutrient Requirements), 1st edn.Viçosa, Brazil: Imprensa Universitária.
Sarruge, J. R. & Haag, H. P. (1974). Análises Químicas em Plantas [Chemical Analysis of Plants]. Piracicaba, Brazil: Departamento de Química, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo.
SAS (1999). SAS/STAT User's Guide, Release 8.00. Cary, NC: SAS Institute.
Schindler, B., Lantzsch, H.-J., Mosenthin, R., Biesalski, H. K. & Drochner, W. (1997). Dose-response effects of microbial phytase on P absorption in growing pigs, fed P reduced diets. In Digestive Physiology in Pigs, Proceedings of the VIIth International Symposium on Digestive Physiology in Pigs (Eds Laplace, J. P., Février, C. & Barbeau, A.), pp. 441445. EAAP Publication No. 88. Saint Malo, France: European Association for Animal Production, Institut National de la Recherche Agronomique.
Schulin-Zeuthen, M., Lopes, J. B., Kebreab, E., Vitti, D. M. S. S., Abdalla, A. L., Haddad, M. D., Crompton, L. A. & France, J. (2005). Effects of phosphorus intake on phosphorus flow in growing pigs: application and comparison of two models. Journal of Theoretical Biology 236, 115125.
Selle, P. H. & Ravindran, V. (2008). Phytate-degrading enzymes in pig nutrition. Livestock Science 113, 99–122.
Selle, P. H., Cowieson, A. J. & Ravindran, V. (2009). Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livestock Science 124, 126141.
Traylor, S. L., Cromwell, G. L., Lindemann, M. D. & Knabe, D. A. (2001). Effects of level of supplemental phytase on ileal digestibility of amino acids, calcium, and phosphorus in dehulled soybean meal for growing pigs. Journal of Animal Science 79, 26342642.
Vasupen, K., Yuangklang, C., Wongsuthavas, S., Panyakaew, P., Mitchaothai, J. & Beynen, A. C. (2008). Growth performance, carcass and meat characteristics of female and male Kadon pigs. Journal of Biological Sciences 8, 671674.
Vitti, D. M. S. S., Kebreab, E., Lopes, J. B., Abdalla, A. L., De Carvalhos, F. F. R., De Resende, K. T., Crompton, L. A. & France, J. (2000). A kinetic model of phosphorus metabolism in growing goats. Journal of Animal Science 78, 27062712.
Young, L. G., Leunissen, M. & Atkinson, J. L. (1993). Addition of microbial phytase to diets of young pigs. Journal of Animal Science 71, 21472150.
Zimmermann, B., Lantzsch, H.-J., Mosenthin, R., Shoner, F.-J., Biesalski, H. K. & Drochner, W. (2002). Comparative evaluation of the efficacy of cereal and microbial phytases in growing pigs fed diets with marginal phosphorus supply. Journal of Science of Food and Agriculture 82, 12981304.
Zimmermann, B., Lantzsch, H.-J., Mosenthin, R., Biesalski, H. K. & Drochner, W. (2003). Additivity of the effect of cereal and microbial phytases on apparent phosphorus absorption in growing pigs fed diets with marginal P supply. Animal Feed Science Technology 104, 143152.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed