Skip to main content Accessibility help

Agronomic traits, ensilability and nutritive value of five pearl millet cultivars grown in a Brazilian semi-arid region

  • R. D. DOS SANTOS (a1) (a2), A. L. A. NEVES (a3), L. G. R. PEREIRA (a3), L. E. SOLLENBERGER (a4), J. A. S. RODRIGUES (a5), J. N. TABOSA (a6), R. S. VERNEQUE (a3), G. F. OLIVEIRA (a7), D. G. JAYME (a2) and L. C. GONÇALVES (a2)...


Pearl millet (Pennisetum glaucum (L.) R.) could play an important role as a feed source for ruminants in arid and semi-arid zones of the world owing to its high yield and drought tolerance. The current paper assessed the agronomic characteristics, ensilability, intake and digestibility of five Brazilian pearl millet cultivars (IPA Bulk1BF, BRS 1501, CMS-03, CMS-01 and BN-2) in a typical Brazilian northeastern semi-arid climate. Forage was harvested at the dough stage of grain maturity (growth stage 86 according to the BBCH scale) and ensiled under laboratory and farm conditions. Apparent digestibility of the silages was determined using 25 Santa Inês male lambs. The cultivars CMS-01, CMS-03 and BN-2 out-performed the others in terms of dry matter (DM) and digestible DM yield/ha. At DM partitioning among plant tissues, the cultivar IPA Bulk1BF had a greater DM associated with panicles and one of the greatest concentrations of organic matter, lactic acid and in vitro dry matter digestibility among the five cultivars. The cultivar BRS 1501 had greater butyric acid concentration as well as one of the highest pH values. Silage produced from BN-2 not only contained greater acetic acid concentration, but also showed one of the greatest total volatile fatty acid concentrations. There were no differences in feed intake and digestibility of nutrients and fibre fractions across all cultivars. Silage made from BN-2 resulted in greater urinary excretion of nitrogen than those produced from BRS 1501. Under the conditions of the present study, the results obtained for production of DM and digestible dry matter, and the ratio of plant fractions, indicates the possible use of these cultivars for silage production in the Brazilian semi-arid region.


Corresponding author

*To whom all correspondence should be addressed. Email:


Hide All
Adams, R. F., Jones, R. L. & Conway, P. L. (1984). High-performance liquid-chromatography of microbial-acid metabolites. Journal of Chromatography B: Biomedical Sciences and Applications 336, 125137.
Aguiar, E. A., Lima, E. F. C., Santos, M. V. F., Carvalho, F. F. R., Guim, A., Medeiros, H. R. & Borges, A. Q. (2006). Yield and chemical composition of chopped tropical grass hays. Revista Brasileira de Zootecnia 35, 22262233.
Akromah, R., Afribeh, D. & Abdulai, M. S. (2008). Genetic variation and trait correlations in a bird-resistant pearl millet landrace population. African Journal of Biotechnology 7, 18471850.
Amer, S., Hassanat, F., Berthiaume, R., Seguin, P. & Mustafa, A. F. (2012). Effects of water soluble carbohydrate content on ensiling characteristics, chemical composition and in vitro gas production of forage millet and forage sorghum silages. Animal Feed Science and Technology 177, 2329.
Amodu, J. T., Kallah, M. S., Adeyinka, I. A., Alawa, J. P. & Lakpini, C. A. M. (2008). The nutritive value of silages made from mixtures of pearl millet (Pennisetum americanum) and lablab (Lablab purpureus) as feed for Yankasa rams. Asian Journal of Animal and Veterinary Advances 3, 7884.
AOAC (Association of Official Analytical Chemists) (2005). Official Methods of Analysis. 18th edn, methods 920·39, 942·05, 934·01, Arlington, VA: AOAC.
Bashir, E. M. A., Ali, A. M., Ali, A. M., Melchinger, A. E., Parzies, H. K. & Haussmann, B. I. G. (2014). Characterization of Sudanese pearl millet germplasm for agro-morphological traits and grain nutritional values. Plant Genetic Resources 12, 3547.
BBCH (Biologische Bundesanstallt für Land-und Forstwirtschaft) (2001). Growth Stages of Mono-and Dicotyledonous Plants: BBCH Monograph. Berlin: Blackwell Wissenschafts-Verlag.
Bell, M. A. & Fischer, R. A. (1994). Guide to Plant and Crop Sampling: Measurements and Observations for Agronomic and Physiological Research in Small Grain Cereals. Wheat Special Report no. 32. Mexico, DF: CIMMYT.
CONCEA (National Council for the Control of Animal Experimentation) (2008). Procedures for The Scientific Use of Animals. Based on the CLAUSE VII of the 1st Paragraph in Article 225 of the Brazilian Federal Constitution. Brasília, DF, Brazil: Brazilian Government through the National Council for the Control of Animal Experimentation (CONCEA) and Institutional Animal Care and Use Committees (CEUA).
Costa, A. C. T., Geraldo, J., Pereira, M. B. & Pimentel, C. (2005). Thermal unities and yield of pearl millet genotypes sown in two seasons. Pesquisa Agropecuária Brasileira 40, 11711177.
da Silva, J. F. C. & Leão, M. I. (1979). Fundamentos de Nutrição dos Ruminantes. Piracicaba, SP, Brazil: Livroceres.
da Silva, T. C., Santos, E. M., Azevedo, J. A. G., Edvan, R. L., Perazzo, A. F., Pinho, R. M. A., Rodrigues, J. A. S. & da Silva, D. S. (2011). Agronomic divergence of sorghum hybrids for silage yield in the semiarid region of Paraiba. Revista Brasileira de Zootecnia 40, 18861893.
Deng, X. P., Shan, L., Zhang, H. & Turner, N. C. (2006). Improving agricultural water use efficiency in arid and semiarid areas of China. Agricultural Water Management 80, 2340.
de Rouw, A. (2004). Improving yields and reducing risks in pearl millet farming in the African Sahel. Agricultural Systems 81, 7393.
Devasenapathy, P., Ramesh, T. & Gangwar, B. (2008). Efficiency Indices for Agriculture Management Research. New Delhi, India: New India Publishing Agency.
dos Santos, H. G., Jacomine, P. K. T., dos Anjos, L. H. C., de Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Cunha, T. J. F. & de Oliveira, J. B. (2013). Sistema Brasileiro de Classificação de Solos. Brasília, DF, Brazil: Embrapa.
dos Santos, R. D., Pereira, L. G. R., Neves, A. L. A., Azevedo, J. A. G., de Moraes, S. A. & Costa, C. T. F. (2010). Agronomic characteristics of maize varieties for silage production in the submédio São Francisco river valley. Acta Scientiarum. Animal Sciences 32, 367373.
dos Santos, R. D., Pereira, L. G. R., Neves, A. L. A., de Araujo, G. G. L., de Aragao, A. S. L. & Chizzotti, M. L. (2011). Intake and total apparent digestibility in lambs fed six maize of maize varieties in the Brazilian Semi-arid. Revista Brasileira de Zootecnia 40, 29222928.
Guimarães Júnior, R., Gonçalves, L. C., Rodrigues, J. A. S., Pires, D. A. A., Jayme, D. G., Rodriguez, N. M. & Saliba, E. O. S. (2009). Agronomic evaluation of pearl millet genotypes (P. Glaucum) planted in summer/fall growing season. Archivos de Zootecnia 58, 629632.
Hassanat, F., Mustafa, A. F. & Seguin, P. (2006). Chemical composition and ensiling characteristics of normal and brown midrib pearl millet harvested at two stages of development in southwestern Québec. Canadian Journal of Animal Science 86, 7180.
Hill, G. M., Utley, P. R., Gates, R. N., Hanna, W. W. & Johnson, J. C. (1999). Pearl millet silage for growing beef heifers and steers. Journal of Production Agriculture 12, 653658.
ICRISAT (2009). Food Security and Diversification in the Drylands. Annual Report 2009. Patancheru, India: ICRISAT.
Khan, S. H., Shahzad, M. A., Nisa, M. & Sarwar, M. (2011). Nutrients intake, digestibility, nitrogen balance and growth performance of sheep fed different silages with or without concentrate. Tropical Animal Health and Production 43, 795801.
Kholova, J., Hash, C. T., Kumar, P. L., Yadav, R. S., Kocova, M. & Vadez, V. (2010). Terminal drought-tolerant pearl millet (Pennisetum glaucum (L.) R. Br.) have high leaf ABA and limit transpiration at high vapour pressure deficit. Journal of Experimental Botany 61, 14311440.
Kung, L. & Ranjit, N. K. (2001). The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. Journal of Dairy Science 84, 11491155.
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P. & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607610.
Maiti, R. & Wesche-Ebeling, P. (1997). Pearl Millet Science. Enfield: Science Publishers Inc.
McDonald, P., Henderson, A. R. & Heron, S. J. E. (1991). The Biochemistry of Silage. Kingston, Kent, UK: Chalcombe Publications.
McDougall, E. I. (1948). Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochemical Journal 43, 99109.
Messman, M. A., Weiss, W. P., Henderlong, P. R. & Shockey, W. L. (1992). Evaluation of pearl millet and field peas plus triticale silages for midlactation dairy cows. Journal of Dairy Science 75, 27692776.
Nielsen, D. C., Vigil, M. F. & Benjamin, J. G. (2006). Forage yield response to water use for dryland corn, millet, and triticale in the Central Great Plains. Agronomy Journal 98, 992998.
Norman, M. J. T., Pearson, C. J. & Searle, P. G. E. (1995). Pearl millet (Pennisetum glaucum). In The Ecology of Tropical Food Crops, 2nd edn (Eds Norman, M. J. T., Pearson, C. J. & Searle, P. G. E.), pp. 164184. Cambridge, UK: Cambridge University Press.
Oseni, T. O. & Masarirambi, M. T. (2011). Effect of climate change on maize (Zea mays) production and food security in Swaziland. American-Eurasian Journal Agricultural and Environmental Sciences 11, 385391.
Pires, F. R., de Assis, R. L., Silva, G. P., Braz, A. J. B. P., Santos, S. C., Vieira Neto, S. A. & de Sousa, J. P. G. (2007). Desempenho agronômico de variedades de milheto em razão da fenologia em pré-safra (Agronomic acting of cultivars of pearl millet in reason of the fenology in pre-cropping). Bioscience Journal 23, 4149. (In Portuguese).
SAS (2002). SAS User's Guide, 9·1 edn. Cary, NC: SAS Institute Inc.
Sebastian, S., Phillip, L. E., Fellner, V. & Idziak, E. S. (1996). Comparative assessment of bacterial inoculation and propionic acid treatment on aerobic stability and microbial populations of ensiled high-moisture ear corn. Journal of Animal Science 74, 447456.
Silungwe, D., Millner, J. P. & McGill, C. R. (2010). Evaluation of sorghum, sudan-grass and pearl millet cultivars in Manawatu. Agronomy New Zealand Journal 40, 110.
Singh, B. R. & Singh, D. P. (1995). Agronomic and physiological responses of sorghum, maize and pearl millet to irrigation. Field Crops Research 42, 5767.
Sivakumar, M. V. K., Das, H. P. & Brunini, O. (2005). Impacts of present and future climate variability and change on agriculture and forestry in the arid and semi-arid tropics. In Increasing Climate Variability and Change: Reducing the Vulnerability of Agriculture and Forestry (Eds Salinger, J., Sivakumar, M. V. K. & Motha, R. P.), pp. 3172. Dordrecht, Netherlands: Springer.
Sniffen, C. J., O'Connor, J. D., Van Soest, P. J., Fox, D. G. & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: 2. Carbohydrate and protein availability. Journal of Animal Science 70, 35623577.
Tilley, J. M. A. & Terry, R. A. (1963). A two stage technique for the in vitro digestion of forage crops. Grass and Forage Science 18, 104111.
Tomich, T. R., Pereira, L. G. R., Gonçalves, L. C., Tomich, R. G. P. & Borges, I. (2003). Características Químicas para avaliação do Processo Fermentativo de Silagens: uma Proposta para Qualificação da Fermentação. Documents Series Embrapa Pantanal 57. Corumbá, Brazil: Embrapa Pantanal.
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.
Ward, J. D., Redfearn, D. D., McCormick, M. E. & Cuomo, G. J. (2001). Chemical composition, ensiling characteristics, and apparent digestibility of summer annual forages in a subtropical double-cropping system with annual ryegrass. Journal of Dairy Science 84, 177182.
Weatherburn, M. W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry 39, 971974.
Weiss, W. P. & Wyatt, D. J. (2000). Effect of oil content and kernel processing of corn Silage on digestibility and milk production by dairy cows. Journal of Dairy Science 83, 351358.
Yadav, O. P. & Bidinger, F. R. (2008). Dual-purpose landraces of pearl millet (Pennisetum glaucum) as sources of high stover and grain yield for arid zone environments. Plant Genetic Resources: Characterization and Utilization 6, 7378.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed