Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T21:04:51.569Z Has data issue: false hasContentIssue false

Agronomic performance and nutritive value of forage legumes in binary mixtures with perennial ryegrass under different defoliation systems

Published online by Cambridge University Press:  08 July 2010

J. KLEEN
Affiliation:
Institute of Crop Science and Plant Breeding, Grass and Forage Science/Organic Agriculture, Christian Albrechts University of Kiel, 24098 Kiel, Germany
F. TAUBE
Affiliation:
Institute of Crop Science and Plant Breeding, Grass and Forage Science/Organic Agriculture, Christian Albrechts University of Kiel, 24098 Kiel, Germany
M. GIERUS*
Affiliation:
Institute of Crop Science and Plant Breeding, Grass and Forage Science/Organic Agriculture, Christian Albrechts University of Kiel, 24098 Kiel, Germany
*
*To whom all correspondence should be addressed. Email: mgierus@email.uni-kiel.de

Summary

Protein in forage legumes is often poorly utilized by ruminants and high nitrogen (N) losses are expected. The objective of the present study was to investigate the effects of forage legumes (white clover, WC; red clover, RC; lucerne, LG; and birdsfoot trefoil, BT) in binary mixtures with perennial ryegrass (G) under different defoliation systems (silage, simulated grazing and grazing) on agronomic performance and forage quality. A high proportion of legumes may favour dry matter (DM) yield and the defoliation system may reduce the persistence of certain forage legumes, with a negative influence on the energy and N yield. Annual DM yield under grazing was highest for WC mixtures (WC+G, 1059·2 g DM/m²) compared to all other mixtures, confirming its adaptation to grazing. Mixtures with RC (RC+G) and LG (LG+G) performed similarly to WC+G, whereas BT mixtures (BT+G) were less competitive under more intensively used systems. Analyses of crude protein, cell wall characterization and protein fractionation showed a three-way interaction between year, mixture and defoliation system. RC and BT resulted in a positive protein quality of the mixtures, probably due to their content of secondary plant compounds. In conclusion, different forage legumes did not perform equally in the cutting and grazing systems, and both legume species and defoliation systems interacted in the production of forage of high protein quality for ruminant nutrition.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bach, M. & Frede, H. G. (1998). Agricultural nitrogen, phosphorus and potassium balances in Germany – methodology and trends 1970 to 1995. Zeitschrift für Pflanzenernährung und Bodenkunde 161, 385393.CrossRefGoogle Scholar
Beever, D. E., Losada, H. R., Cammel, S. B., Evans, R. T. & Haines, M. J. (1986 a). Effect of forage species and season on nutrient digestion and supply in grazing cattle. British Journal of Nutrition 56, 209225.CrossRefGoogle ScholarPubMed
Beever, D. E., Dhanoa, M. S., Losada, H. R., Evans, R. T., Cammell, S. B. & France, J. (1986 b). The effect of forage species and stage of harvest on the processes of digestion occurring in the rumen of cattle. British Journal of Nutrition 56, 439454.CrossRefGoogle ScholarPubMed
Bouton, J. H. & Gates, R. N. (2003). Grazing-tolerant alfalfa cultivars perform well under rotational stocking and hay management. Agronomy Journal 95, 14611464.CrossRefGoogle Scholar
Broderick, G. A. (1995). Desirable characteristics of forage legumes for improving protein utilization in ruminants. Journal of Animal Science 73, 27602773.CrossRefGoogle ScholarPubMed
Broderick, G. A. & Albrecht, K. A. (1997). Ruminal in vitro degradation of protein in tannin-free and tannin containing forage legume species. Crop Science 37, 18841891.CrossRefGoogle Scholar
Brummer, E. C. & Moore, K. J. (2000). Persistence of cool-season grass and legume cultivars under continuous grazing of beef cattle. Agronomy Journal 92, 466471.CrossRefGoogle Scholar
Buxton, D. R. (1996). Quality-related characteristics of forages as influenced by plant environment and agronomic factors. Animal Feed Science and Technology 59, 3749.CrossRefGoogle Scholar
Cassida, K. A., Griffin, T. S., Rodriguez, J., Patching, S. C., Hesterman, O. B. & Rust, S. R. (2000). Protein degradability and forage quality in maturing alfalfa, red clover, and birdsfoot trefoil. Crop Science 40, 209215.CrossRefGoogle Scholar
Constabel, C. P. & Ryan, C. A. (1998). A survey of wound- and methyl jasmonate-induced leaf polyphenol oxidase in crop plants. Phytochemistry 47, 507511.CrossRefGoogle Scholar
Deprez, B., Lambert, R., Decamps, C. & Peeters, A. (2004). Production and quality of red clover (Trifolium pratense) and alfalfa (Medicago sativa) in pure stand or in grass mixture in Belgium. Grassland Science in Europe 9, 498500.Google Scholar
Dewhurst, R. J., Evans, R. T., Scollan, N. D., Moorby, J. M., Merry, R. J. & Wilkins, R. J. (2003). Comparison of grass and legume silages for milk production. 2. In vivo and in sacco evaluations of rumen function. Journal of Dairy Science 86, 26122621.CrossRefGoogle ScholarPubMed
Dinn, N. E., Shelford, J. A. & Fisher, L. J. (1998). Use of the Cornell net carbohydrate and protein system and rumen-protected lysine and methionine to reduce nitrogen excretion from lactating dairy cows. Journal of Dairy Science 81, 229237.CrossRefGoogle ScholarPubMed
Eickler, B., Gierus, M., Kleen, J.& Taube, F. (in press) Specific polyphenol oxidase activity of red clover (Trifolium pratense L.) and its relation with forage quality in field experiments. Acta Agriculturae Scandinavica, Section B, Plant and Soil (in press) DOI: 10.1080/09064710903463626.Google Scholar
Elgersma, A., Nassiri, M. & Schlepers, H. (1998). Competition in perennial ryegrass-white clover mixtures under cutting. 1. Dry-matter yield, species composition and nitrogen fixation. Grass and Forage Science 53, 353366.CrossRefGoogle Scholar
Elizalde, J. C., Merchen, N. R. & Faulkner, D. B. (1999). Fractionation of fiber and crude protein in fresh forages during the spring growth. Journal of Animal Science 77, 476484.CrossRefGoogle ScholarPubMed
Ennik, G. C. (1981). Grass-clover competition especially in relation to N fertilization. In Plant Physiology and Herbage Production. Proceedings of the Occasional Symposium of the British Grassland Society No. 13 (Ed. Wright, C. E.), pp. 169172. Warwickshire, UK: British Grassland Society.Google Scholar
Frame, J. (2005). Forage Legumes for Temperate Grasslands. Rome & Enfield, USA: FAO & Science Publishers, Inc.Google Scholar
Fraser, M. D., Fychan, R. & Jones, R. (2000). Alternative forages in finishing systems. In Beef from Grass and Forage. Proceedings of the Occasional Symposium of the British Grassland Society no. 16 (Ed. Pullar, D.), pp. 6575. Warwickshire, UK: British Grassland Society.Google Scholar
Gierus, M., Kleen, J. & Taube, F. (2005). Variation in protein quality of forage legumes during spring growth. In Proceedings of the XX International Grassland Congress (Eds O'Mara, F., Wilkins, R. J., Lovett, L. D. K., Rogers, P. A. M. & Boland, T. M.), p. 240. Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
Gierus, M., Herrmann, A. & Taube, F. (2007). In vitro Untersuchungen zum Abbau von Rohprotein verschiedener Futterleguminosen, Deutsches Weidelgras und Silomais. Züchtungskunde 79, 466475.Google Scholar
Hermann, M. L., Russell, J. R. & Barnhart, S. K. (2002). Evaluation of hay-type and grazing-tolerant alfalfa cultivars in season-long or complementary rotational stocking systems for beef cow. Journal of Animal Science 80, 768779.CrossRefGoogle ScholarPubMed
Horn, M. & Vollandt, R. (1995). Biometrie – Multiple Tests und Auswahlverfahren. Stuttgart, Germany: Gustav Fischer Verlag.Google Scholar
Jones, B. A., Muck, R. E. & Hatfield, R. D. (1995). Red clover extracts inhibit legume proteolysis. Journal of the Science of Food and Agriculture 67, 329333.CrossRefGoogle Scholar
Kallenbach, R. L., Nelson, C. J. & Coutts, J. H. (2002). Yield, quality, and persistence of grazing- and hay- type alfalfa under three harvest frequencies. Agronomy Journal 94, 10941103.CrossRefGoogle Scholar
Leach, G. J. (1983). Influence of rest interval, grazing duration and mowing on the growth, mineral content and utilization of a lucerne pasture in a subtropical environment. Journal of Agricultural Science, Cambridge 101, 169183.CrossRefGoogle Scholar
Lee, M. R. F., Tweed, J. K. S., Minchin, F. R. & Winters, A. L. (2009). Red clover polyphenol oxidase: activation, activity and efficacy under grazing. Animal Feed Science and Technology 149, 250264.CrossRefGoogle Scholar
Licitra, G., Hernandez, T. M. & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology 57, 347358.CrossRefGoogle Scholar
Mason, V. C. & Frederiksen, J. H. (1979). Partition of the nitrogen in sheep faeces with detergent solutions, and its application to the estimation of the true digestibility of dietary nitrogen and excretion of non dietary faecal nitrogen. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 41, 121131.CrossRefGoogle Scholar
Menke, K. H. & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28, 755.Google Scholar
Misselbrook, T. H., Powell, J. M., Broderick, G. A. & Grabber, J. H. (2005). Dietary manipulation in dairy cattle: Laboratory experiments to assess the influence on ammonia emissions. Journal of Dairy Science 88, 17651777.CrossRefGoogle ScholarPubMed
Mouriño, F., Albrecht, K. A., Schaefer, D. M. & Berzaghi, P. (2003). Steer performance on kura clover-grass and red clover-grass mixed pastures. Agronomy Journal 95, 652659.CrossRefGoogle Scholar
Mutabaruka, R., Hairiah, K. & Cadisch, G. (2007). Microbial degradation of hydrolysable and condensed tannin polyphenol-protein complexes in soils from different land-use histories. Soil Biology and Biochemistry 39, 14791492.CrossRefGoogle Scholar
Neutze, S. A., Smith, R. L. & Forbes, W. A. (1993). Application of an inhibitor in vitro method for estimating rumen degradation of feed protein. Animal Feed Science and Technology 40, 251265.CrossRefGoogle Scholar
Nevens, F. & Rehuel, D. (2003). Effects of cutting or grazing grass swards on herbage yield, nitrogen uptake and residual soil nitrate at different levels of N fertilization. Grass and Forage Science 58, 431449.CrossRefGoogle Scholar
Nilsdotter-Linde, N., Olsson, I., Hedqvist, H., Jansson, J., Danielsson, G. & Christensson, D. (2004). Performance of heifers offered herbage with birdsfoot trefoil (Lotus corniculatus L.) or white clover (Trifolium repens L.). Grassland Science in Europe 9, 10621064.Google Scholar
Ombabi, A., Südekum, K.-H. & Taube, F. (2001). Untersuchungen am Primäraufwuchs zweier Weidelgräser zur Dynamik der Veränderung in der Verdaulichkeit und der Futteraufnahme durch Schafe. Journal of Animal Physiology and Animal Nutrition 85, 385405.CrossRefGoogle Scholar
Schills, R. L. M., Vellinga, T. V. & Kraak, T. (1999). Dry-matter yield and herbage quality of a perennial ryegrass/white clover sward in a rotational grazing and cutting system. Grass and Forage Science 54, 1929.CrossRefGoogle Scholar
Seguin, P., Mustafa, A. F. & Sheaffer, C. C. (2002). Effects of soil moisture deficit on forage quality, digestibility, and protein fractionation of kura clover. Journal of Agronomy and Crop Science 188, 260266.CrossRefGoogle Scholar
Shannak, S., Südekum, K.-H. & Susenbeth, A. (2000). Estimating ruminal crude protein degradation with in situ and chemical fractionation procedures. Animal Feed Science and Technology 85, 195214.CrossRefGoogle Scholar
Skuodiene, R. & Repsiene, R. (2005). The influence of different management systems on the productivity of timothy/clover swards. In Integrating Efficient Grassland Farming & Biodiversity. Proceeding of the 13th International Occasional Symposium of the European-Grassland-Federation, Tartu, Estonia (Eds Lillak, R., Viiralt, R., Linke, A. & Geherman, V.), pp. 609612. Tartu, Estonia: Estonian Grassland Society.Google Scholar
Sleugh, B., Moore, K. J., George, J. R. & Brummer, E. C. (2000). Binary legume–grass mixtures improve forage yield, quality and seasonal distribution. Agronomy Journal 92, 2429.CrossRefGoogle Scholar
Sniffen, C. J., O'Connor, J. D., Van Soest, P. J., Fox, D. G. & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science 70, 35623577.CrossRefGoogle ScholarPubMed
Tamminga, S. (1996). A review on environmental impacts of nutritional strategies in ruminants. Journal of Animal Science 74, 31123124.CrossRefGoogle ScholarPubMed
Trott, H., Wachendorf, M., Ingwersen, B. & Taube, F. (2004). Performance and environmental effects of forage production on sandy soils. I. Impact of defoliation system and nitrogen input on performance and N balance of grassland. Grass and Forage Science 59, 4155.CrossRefGoogle Scholar
Universität Hohenheim-Dokumentationsstelle (1997). DLG-Futterwerttabellen für Wiederkäuer, 7th edn. Frankfurt/Main, Germany: DLG-Verlags GmbH.Google Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle – methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle Scholar
Vipond, J. E., Swift, G., Cleland, A. T., Fitzsimons, J. & Hunter, E. A. (1997). A comparision of diploid and tetraploid perennial ryegrass and tetraploid ryegrass/white clover swards under continuous sheep stocking at controlled sward heights. 3. Sward characteristics and animal output, years 4–8. Grass and Forage Science 52, 99109.CrossRefGoogle Scholar
Williams, T. A., Abberton, M. T. & Rhodes, I. (2003). Performance of white clover varieties combined in blends and alone when grown with perennial ryegrass under sheep and cattle grazing. Grass and Forage Science 58, 9093.CrossRefGoogle Scholar
Yarrow, N. H. & Penning, P. D. (2001). The liveweight gain of Limousin×Friesian heifers grazing perennial ryegrass/white clover swards of different clover content and the effects of their grazing on sward botanical composition. Grass and Forage Science 56, 238248.CrossRefGoogle Scholar