Skip to main content Accessibility help

Agronomic and physiological responses of Chinese facultative wheat genotypes to high-yielding Mediterranean conditions

  • B. ZHOU (a1), A. ELAZAB (a1), J. BORT (a1), Á. SANZ-SÁEZ (a1), M. T. NIETO-TALADRIZ (a2), M. D. SERRET (a1) and J. L. ARAUS (a1)...


Nine wheat genotypes, bred for the high-input agronomical conditions of Henan Province (China), were tested under the high-yielding Mediterranean conditions of Spain. Two cultivars widely grown in the zone were included as controls. Crop growth and leaf chlorophyll (Chl) content, leaf stomatal conductance (g s) and canopy temperature (CT) were measured during the crop cycle and stable carbon (C), oxygen (O) and nitrogen (N) isotope compositions (δ 13C, δ 18O and δ 15N) were analysed on different plant parts. The lower yield of the Chinese genotypes compared with the controls was due to fewer grains/unit area, associated with lower tillering and a plant height clearly below the optimal range. Moreover, Chinese wheat exhibited a lower spike fertility index than the controls, and this was associated with a less compact spike structure. The physiological characteristics that were related to better performance under high-yielding Mediterranean conditions consisted of a higher green aerial biomass, particularly during the reproductive stage, together with more favourable water conditions (higher g s and lower CT and δ 13C), the capacity to take up water during grain fill (higher δ 18O) and a more efficient uptake (lower δ 15N) and utilization (lower leaf N and Chl content) of N fertilizer. It is concluded that Chinese genotypes exhibited a low acclimation capacity to the moderate stress typical of the high-yielding Mediterranean conditions.


Corresponding author

*To whom all correspondence should be addressed. Email:


Hide All
Araus, J. L., Slafer, G. A., Reynolds, M. P. & Royo, C. (2002). Plant breeding and water stress in C3 cereals: what should we breed for? Annals of Botany 89, 925940.
Araus, J. L., Bort, J., Steduto, P., Villegas, D. & Royo, C. (2003). Breeding cereals for Mediterranean conditions: ecophysiological clues for biotechnology application. Annals of Applied Biology 142, 129141.
Araus, J. L., Slafer, G. A., Royo, C. & Serret, M. D. (2008). Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Science 27, 377412.
Araus, J. L., Cabrera-Bosquet, L., Serret, M. D., Bort, J. & Nieto-Taladriz, M. T. (2013). Comparative performance of δ 13C, δ 18O and δ 15N for phenotyping durum wheat adaptation to a dry land environment. Functional Plant Biology 40, 595608.
Barbour, M. M., Fischer, R. A., Sayre, K. D. & Farquhar, G. D. (2000). Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat. Australian Journal of Plant Physiology 27, 625637.
Becker, W. A. (1992). Manual of Quantitative Genetics. 5th edn, Washington, D.C.: Academic Enterprises.
Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research 56, 11591168.
Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research 112, 119123.
Cabrera-Bosquet, L., Sanchez, C. & Araus, J. L. (2009). Oxygen isotope enrichment (Δ18O). reflects yield potential and drought resistance in maize. Plant, Cell & Environment 32, 14871499.
Cabrera-Bosquet, L., Albrizio, R., Nogués, S. & Araus, J. L. (2011). Dual δ 13C/δ 18O response to water and nitrogen availability and its relationship with yield in field-grown durum wheat. Plant, Cell & Environment 34, 418433.
Cheng, L., Liu, R. H. & Ma, Z. H. (2011). Influence of global warming on winter wheat yield in Henan Province. Chinese Journal of Eco-Agriculture 19, 854859, (Chinese version with English abstract), doi: 10.3724/SP.J.1011.2011.00854.
Del Pozo, A., Matus, I., Serret, M. D. & Araus, J. L. (2014). Agronomic and physiological traits associated with breeding advances of wheat under high-productive Mediterranean conditions. The case of Chile. Environmental and Experimental Botany 103, 180189.
Duggan, B. L., Richards, R. A., Van Herwaarden, A. F. & Fettell, N. A. (2005). Agronomic evaluation of a tiller inhibition gene (tin) in wheat I. Effect on yield, yield components, and grain protein. Australian Journal of Agricultural Research 56, 169178.
Falconer, D. S. & Mackay, T. F. C. (1996). Introduction to Quantitative Genetics. 4th edn, Harlow, Essex, UK: Longman Group Ltd.
Farquhar, G. D. & Richards, R. A. (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology 11, 539552.
Fischer, R. A. (2001). Selection traits for improving yield potential. In Application of Physiology in Wheat Breeding (Eds Reynolds, M. P., Ortiz-Monasterio, J. I. & McNab, A.), pp. 148159. Mexico, D.F.: CIMMYT.
Fischer, R. A. (2007). Understanding the physiological basis of yield potential in wheat. The Journal of Agricultural Science, Cambridge 145, 99113.
Fox, R. H., Piekielek, W. P. & Macneal, K. M. (1994). Using a chlorophyll meter to predict nitrogen fertilizer needs of winter wheat. Communications in Soil Science and Plant Analysis 25, 171181.
Gaju, O. (2007). Identifying physiological processes limiting genetic improvement of ear fertility in wheat. Ph.D. Thesis, University of Nottingham, UK.
García del Moral, L. F., Rharrabti, Y., Villegas, D. & Royo, C. (2003). Evaluation of grain yield and its components in durum wheat under Mediterranean conditions. Agronomy Journal 95, 266274.
Gepts, P. (2006). Plant genetic resources conservation and utilization. Crop Science 46, 22782292.
Graybosch, R. A. & Peterson, C. J. (2012). Specific adaptation and genetic progress for grain yield in Great Plains hard winter wheats from 1987 to 2010. Crop Science 52, 631643.
Guo, T. C., Xu, L. N., Feng, W., Sheng, K. & Zhu, Y. J. (2009). Effects of plant density on spike differentiation and C/N metabolism of Lankao Aizao 8. Acta Agriculturae Boreali-Sinica 24, 94198.
Hawkesford, M. J., Araus, J. L., Park, R., Calderini, D., Miralles, D., Shen, T., Zhang, J. & Parry, M. A. J. (2013). Prospects of doubling global wheat yields. Food and Energy Security 2, 3448.
Johnson, H. W., Robinson, H. F. & Comstock, R. E. (1955). Estimates of genetic and environmental variability in soybeans. Agronomy Journal 47, 314318.
Jones, H. G., Serraj, R., Loveys, B. R., Xiong, L., Wheaton, A. & Price, A. H. (2009). Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Functional Plant Biology 36, 978989.
Li, H. L., Luo, Y. & Ma, J. H. (2011). Radiation-use efficiency and the harvest index of winter wheat at different nitrogen levels and their relationships to canopy spectral reflectance. Crop and Pasture Science 62, 208217.
Long, S. O., Zhu, X. G., Naidu, S. L. & Ort, D. R. (2006). Can improvement in photosynthesis increase crop yield? Plant, Cell & Environment 29, 315330.
Lopes, M. S., Cortadellas, N., Kichey, T., Dubois, F., Habash, D. Z. & Araus, J. L. (2006). Wheat nitrogen metabolism during grain filling, comparative role of glumes and the flag leaf. Planta 225, 165181.
Ma, D. Y., Guo, T. C., Wang, C. Y., Zhu, Y. J., Song, X., Wang, Y. H. & Yue, Y. J. (2008). Effects of nitrogen application rates on accumulation, translocation, and partitioning of photosynthate in winter wheat at grain filling stage. Acta Agronomica Sinica 34, 10271033.
Marti, J., Bort, J., Slafer, G. A. & Araus, J. L. (2007). Can wheat yield be assessed by early measurements of normalized difference vegetation index? Annals of Applied Biology 150, 253257.
Mussgnug, J. H., Thomas-Hall, S., Rupprecht, J., Foo, A., Klassen, V., McDowall, A., Schenk, P. M., Kruse, O. & Hankamer, B. (2007). Engineering photosynthetic light capture, impacts on improved solar energy to biomass conversion. Plant Biotechnology Journal 5, 802814.
Oury, F-X., Godin, C., Mailliard, A., Chassin, A., Gardet, O., Giraud, A., Heumez, E., Morlais, J.-Y., Rolland, B., Rousset, M., Trottet, M. & Charmet, G. (2012). A study of genetic progress due to selection reveals a negative effect of climate change on bread wheat yield in France. European Journal of Agronomy 40, 2838.
Oweis, T., Pala, M. & Ryan, J. (1998). Stabilizing rainfed wheat yields with supplemental irrigation and nitrogen in a Mediterranean climate. Agronomy Journal 90, 672681.
Parry, M. A. J., Reynolds, M., Salvucci, M. E., Raines, C., Andralojc, P. J., Zhu, X. G., Price, G. D., Condon, A. G. & Furbank, R. T. (2011). Raising yield potential of wheat II. Increasing photosynthetic capacity and efficiency. Journal of Experimental Botany 62, 453467.
Pask, A. (2009). Optimising nitrogen storage in wheat canopies for genetic reduction in fertiliser nitrogen inputs. Ph.D. Thesis, University of Nottingham, School of Biosciences Sutton Bonnington Campus Leicestershire, UK.
Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu, H., Ma, Y., Ding, Y., Friedlingstein, P., Liu, C., Tan, K., Yu, Y., Zhang, T. & Fang, J. (2010). The impacts of climate change on water resources and agriculture in China. Nature 467, 4351.
Poole, N. (2005). Cereal Growth Stages – the Link to Crop Management. Grains Research & Development Corporation, Barton, Australia, ISBN 1-875477-40-3
Reynolds, M. P., Delgado B, M. I., Gutiérrez-Rodríguez, M. & Larqué-Saavedra, A. (2000). Photosynthesis of wheat in a warm, irrigated environment I, Genetic diversity and crop productivity. Field Crops Research 66, 3750.
Richards, R. A. (1992). The effect of dwarfing genes in spring wheat in dry environments. I. Agronomic characteristics. Australian Journal of Agricultural Research 43, 517527.
Richards, R. A., Rebetzke, G. J., Condon, A. G. & Van Herwaarden, A. F. (2002). Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Science 42, 111121.
Sánchez-Bragado, R., Elazab, A., Zhou, B., Serret, M. D., Bort, J., Nieto-Taladriz, M. T. & Araus, J. L. (2014). Contribution of the ear and the flag leaf to grain filling in durum wheat inferred from the carbon isotope signature, genotypic and growing conditions effects. Journal of Integrative Plant Biology 56, 444455.
Serret, M. D., Ortiz-Monasterio, I., Pardo, A. & Araus, J. L. (2008). The effect of urea fertilization and genotype on yield, NUE, δ 15N and δ 13C in wheat. Annals of Applied Biology 153, 243257.
Spaner, D., Todd, A. G., Navabi, A., McKenzie, D. B. & Goonewardene, L. A. (2005). Can leaf chlorophyll measures at differing growth stages be used as an indicator of winter wheat and spring barley nitrogen requirements in eastern Canada? Journal of Agronomy and Crop Science 191, 393399.
Tambussi, E. A., Nogués, S., Ferrio, P., Voltas, J. & Araus, J. L. (2005). Does higher yield potential improve barley performance in Mediterranean conditions?: a case study. Field Crops Research 91, 149160.
Tambussi, E. A., Bort, J., Guiamet, J. J., Nogués, S. & Araus, J. L. (2007). The photosynthetic role of ears in C3 cereals, metabolism, water use efficiency and contribution to grain yield. Critical Reviews in Plant Sciences 26, 116.
Xiao, Y. G., Qian, Z. G., Wu, K., Liu, J. J., Xia, X. C., Ji, W. Q. & He, Z. H. (2012). Genetic gains in grain yield and physiological traits of winter wheat in Shandong province, China, from 1969 to 2006. Crop Science 52, 4456.
Yang, W. P., Guo, T. C., Liu, S. B., Wang, C. Y., Wang, Y. H. & Ma, D. Y. (2008). Effects of row spacing in winter wheat on canopy structure and microclimate in later growth stage. Chinese Journal of Plant Ecology 32, 485490, (Chinese Version).
Ye, Y. L., Wang, G. L., Zhu, Y. J., Li, H. H. & Huang, Y. F. (2010). Effects of nitrogen fertilization on population dynamics, soil nitrogen and yield of high-yielding wheat. Ying Yong Sheng Tai Xue Bao 21, 351358, (Chinese Version).
You, L., Rosegrant, M. W., Wood, S. & Sun, D. (2009). Impact of growing season temperature on wheat productivity in China. Agricultural and Forest Meteorology 149, 10091014.
Yousfi, S., Serret, M. D., Márquez, A. J., Voltas, J. & Araus, J. L. (2012). Combined use of δ 13C, δ 18O and δ 15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit. New Phytologist 194, 230244.
Yousfi, S., Serret, M. D. & Araus, J. L. (2013). Comparative response of δ 13C, δ 18O and δ 15N in durum wheat exposed to salinity at the vegetative and reproductive stages. Plant, Cell & Environment 36, 12141227.
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.
Zheng, T. C., Zhang, X. K., Yin, G. H., Wang, L. N., Han, Y. L., Chen, L., Huang, F., Tang, J. W., Xia, X. C. & He, Z. H. (2011). Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008. Field Crops Research 122, 225233.
Zhou, Y., He, Z. H., Sui, X. X., Xia, X. C., Zhang, X. K. & Zhang, G. S. (2007). Genetic improvement of grain yield and associated traits in the northern China winter wheat region from 1960 to 2000. Crop Science 47, 245253.
Zhou, B., Sanz-Sáez, A., Elazab, A., Shen, T. M., Sánchez-Bragado, R., Bort, J., Serret, M. D. & Araus, J. L. (2014). Physiological traits related with the recent increase in yield potential of winter wheat from Henan province, China. Journal of Integrative Plant Biology 56, 492504.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed