Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T16:06:47.754Z Has data issue: false hasContentIssue false

Agronomic and physiological responses of Chinese facultative wheat genotypes to high-yielding Mediterranean conditions

Published online by Cambridge University Press:  26 August 2015

B. ZHOU
Affiliation:
Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
A. ELAZAB
Affiliation:
Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
J. BORT
Affiliation:
Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
Á. SANZ-SÁEZ
Affiliation:
Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
M. T. NIETO-TALADRIZ
Affiliation:
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra.de La Coruña Km. 7.5, 28040 Madrid, Spain
M. D. SERRET
Affiliation:
Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
J. L. ARAUS*
Affiliation:
Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
*
*To whom all correspondence should be addressed. Email: jaraus@ub.edu

Summary

Nine wheat genotypes, bred for the high-input agronomical conditions of Henan Province (China), were tested under the high-yielding Mediterranean conditions of Spain. Two cultivars widely grown in the zone were included as controls. Crop growth and leaf chlorophyll (Chl) content, leaf stomatal conductance (gs) and canopy temperature (CT) were measured during the crop cycle and stable carbon (C), oxygen (O) and nitrogen (N) isotope compositions (δ13C, δ18O and δ15N) were analysed on different plant parts. The lower yield of the Chinese genotypes compared with the controls was due to fewer grains/unit area, associated with lower tillering and a plant height clearly below the optimal range. Moreover, Chinese wheat exhibited a lower spike fertility index than the controls, and this was associated with a less compact spike structure. The physiological characteristics that were related to better performance under high-yielding Mediterranean conditions consisted of a higher green aerial biomass, particularly during the reproductive stage, together with more favourable water conditions (higher gs and lower CT and δ13C), the capacity to take up water during grain fill (higher δ18O) and a more efficient uptake (lower δ15N) and utilization (lower leaf N and Chl content) of N fertilizer. It is concluded that Chinese genotypes exhibited a low acclimation capacity to the moderate stress typical of the high-yielding Mediterranean conditions.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Araus, J. L., Slafer, G. A., Reynolds, M. P. & Royo, C. (2002). Plant breeding and water stress in C3 cereals: what should we breed for? Annals of Botany 89, 925940.CrossRefGoogle Scholar
Araus, J. L., Bort, J., Steduto, P., Villegas, D. & Royo, C. (2003). Breeding cereals for Mediterranean conditions: ecophysiological clues for biotechnology application. Annals of Applied Biology 142, 129141.CrossRefGoogle Scholar
Araus, J. L., Slafer, G. A., Royo, C. & Serret, M. D. (2008). Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Science 27, 377412.CrossRefGoogle Scholar
Araus, J. L., Cabrera-Bosquet, L., Serret, M. D., Bort, J. & Nieto-Taladriz, M. T. (2013). Comparative performance of δ 13C, δ 18O and δ 15N for phenotyping durum wheat adaptation to a dry land environment. Functional Plant Biology 40, 595608.Google Scholar
Barbour, M. M., Fischer, R. A., Sayre, K. D. & Farquhar, G. D. (2000). Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat. Australian Journal of Plant Physiology 27, 625637.Google Scholar
Becker, W. A. (1992). Manual of Quantitative Genetics. 5th edn, Washington, D.C.: Academic Enterprises.Google Scholar
Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research 56, 11591168.CrossRefGoogle Scholar
Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research 112, 119123.Google Scholar
Cabrera-Bosquet, L., Sanchez, C. & Araus, J. L. (2009). Oxygen isotope enrichment (Δ18O). reflects yield potential and drought resistance in maize. Plant, Cell & Environment 32, 14871499.CrossRefGoogle ScholarPubMed
Cabrera-Bosquet, L., Albrizio, R., Nogués, S. & Araus, J. L. (2011). Dual δ 13C/δ 18O response to water and nitrogen availability and its relationship with yield in field-grown durum wheat. Plant, Cell & Environment 34, 418433.Google Scholar
Cheng, L., Liu, R. H. & Ma, Z. H. (2011). Influence of global warming on winter wheat yield in Henan Province. Chinese Journal of Eco-Agriculture 19, 854859, (Chinese version with English abstract), doi: 10.3724/SP.J.1011.2011.00854.Google Scholar
Del Pozo, A., Matus, I., Serret, M. D. & Araus, J. L. (2014). Agronomic and physiological traits associated with breeding advances of wheat under high-productive Mediterranean conditions. The case of Chile. Environmental and Experimental Botany 103, 180189.CrossRefGoogle Scholar
Duggan, B. L., Richards, R. A., Van Herwaarden, A. F. & Fettell, N. A. (2005). Agronomic evaluation of a tiller inhibition gene (tin) in wheat I. Effect on yield, yield components, and grain protein. Australian Journal of Agricultural Research 56, 169178.CrossRefGoogle Scholar
Falconer, D. S. & Mackay, T. F. C. (1996). Introduction to Quantitative Genetics. 4th edn, Harlow, Essex, UK: Longman Group Ltd.Google Scholar
Farquhar, G. D. & Richards, R. A. (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology 11, 539552.Google Scholar
Fischer, R. A. (2001). Selection traits for improving yield potential. In Application of Physiology in Wheat Breeding (Eds Reynolds, M. P., Ortiz-Monasterio, J. I. & McNab, A.), pp. 148159. Mexico, D.F.: CIMMYT.Google Scholar
Fischer, R. A. (2007). Understanding the physiological basis of yield potential in wheat. The Journal of Agricultural Science, Cambridge 145, 99113.Google Scholar
Fox, R. H., Piekielek, W. P. & Macneal, K. M. (1994). Using a chlorophyll meter to predict nitrogen fertilizer needs of winter wheat. Communications in Soil Science and Plant Analysis 25, 171181.Google Scholar
Gaju, O. (2007). Identifying physiological processes limiting genetic improvement of ear fertility in wheat. Ph.D. Thesis, University of Nottingham, UK.Google Scholar
García del Moral, L. F., Rharrabti, Y., Villegas, D. & Royo, C. (2003). Evaluation of grain yield and its components in durum wheat under Mediterranean conditions. Agronomy Journal 95, 266274.Google Scholar
Gepts, P. (2006). Plant genetic resources conservation and utilization. Crop Science 46, 22782292.CrossRefGoogle Scholar
Graybosch, R. A. & Peterson, C. J. (2012). Specific adaptation and genetic progress for grain yield in Great Plains hard winter wheats from 1987 to 2010. Crop Science 52, 631643.CrossRefGoogle Scholar
Guo, T. C., Xu, L. N., Feng, W., Sheng, K. & Zhu, Y. J. (2009). Effects of plant density on spike differentiation and C/N metabolism of Lankao Aizao 8. Acta Agriculturae Boreali-Sinica 24, 94198.Google Scholar
Hawkesford, M. J., Araus, J. L., Park, R., Calderini, D., Miralles, D., Shen, T., Zhang, J. & Parry, M. A. J. (2013). Prospects of doubling global wheat yields. Food and Energy Security 2, 3448.Google Scholar
Johnson, H. W., Robinson, H. F. & Comstock, R. E. (1955). Estimates of genetic and environmental variability in soybeans. Agronomy Journal 47, 314318.CrossRefGoogle Scholar
Jones, H. G., Serraj, R., Loveys, B. R., Xiong, L., Wheaton, A. & Price, A. H. (2009). Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Functional Plant Biology 36, 978989.Google Scholar
Li, H. L., Luo, Y. & Ma, J. H. (2011). Radiation-use efficiency and the harvest index of winter wheat at different nitrogen levels and their relationships to canopy spectral reflectance. Crop and Pasture Science 62, 208217.Google Scholar
Long, S. O., Zhu, X. G., Naidu, S. L. & Ort, D. R. (2006). Can improvement in photosynthesis increase crop yield? Plant, Cell & Environment 29, 315330.CrossRefGoogle Scholar
Lopes, M. S., Cortadellas, N., Kichey, T., Dubois, F., Habash, D. Z. & Araus, J. L. (2006). Wheat nitrogen metabolism during grain filling, comparative role of glumes and the flag leaf. Planta 225, 165181.Google Scholar
Ma, D. Y., Guo, T. C., Wang, C. Y., Zhu, Y. J., Song, X., Wang, Y. H. & Yue, Y. J. (2008). Effects of nitrogen application rates on accumulation, translocation, and partitioning of photosynthate in winter wheat at grain filling stage. Acta Agronomica Sinica 34, 10271033.Google Scholar
Marti, J., Bort, J., Slafer, G. A. & Araus, J. L. (2007). Can wheat yield be assessed by early measurements of normalized difference vegetation index? Annals of Applied Biology 150, 253257.Google Scholar
Mussgnug, J. H., Thomas-Hall, S., Rupprecht, J., Foo, A., Klassen, V., McDowall, A., Schenk, P. M., Kruse, O. & Hankamer, B. (2007). Engineering photosynthetic light capture, impacts on improved solar energy to biomass conversion. Plant Biotechnology Journal 5, 802814.Google Scholar
Oury, F-X., Godin, C., Mailliard, A., Chassin, A., Gardet, O., Giraud, A., Heumez, E., Morlais, J.-Y., Rolland, B., Rousset, M., Trottet, M. & Charmet, G. (2012). A study of genetic progress due to selection reveals a negative effect of climate change on bread wheat yield in France. European Journal of Agronomy 40, 2838.Google Scholar
Oweis, T., Pala, M. & Ryan, J. (1998). Stabilizing rainfed wheat yields with supplemental irrigation and nitrogen in a Mediterranean climate. Agronomy Journal 90, 672681.Google Scholar
Parry, M. A. J., Reynolds, M., Salvucci, M. E., Raines, C., Andralojc, P. J., Zhu, X. G., Price, G. D., Condon, A. G. & Furbank, R. T. (2011). Raising yield potential of wheat II. Increasing photosynthetic capacity and efficiency. Journal of Experimental Botany 62, 453467.Google Scholar
Pask, A. (2009). Optimising nitrogen storage in wheat canopies for genetic reduction in fertiliser nitrogen inputs. Ph.D. Thesis, University of Nottingham, School of Biosciences Sutton Bonnington Campus Leicestershire, UK.Google Scholar
Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu, H., Ma, Y., Ding, Y., Friedlingstein, P., Liu, C., Tan, K., Yu, Y., Zhang, T. & Fang, J. (2010). The impacts of climate change on water resources and agriculture in China. Nature 467, 4351.CrossRefGoogle ScholarPubMed
Poole, N. (2005). Cereal Growth Stages – the Link to Crop Management. Grains Research & Development Corporation, Barton, Australia, ISBN 1-875477-40-3 Google Scholar
Reynolds, M. P., Delgado B, M. I., Gutiérrez-Rodríguez, M. & Larqué-Saavedra, A. (2000). Photosynthesis of wheat in a warm, irrigated environment I, Genetic diversity and crop productivity. Field Crops Research 66, 3750.CrossRefGoogle Scholar
Richards, R. A. (1992). The effect of dwarfing genes in spring wheat in dry environments. I. Agronomic characteristics. Australian Journal of Agricultural Research 43, 517527.Google Scholar
Richards, R. A., Rebetzke, G. J., Condon, A. G. & Van Herwaarden, A. F. (2002). Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Science 42, 111121.Google Scholar
Sánchez-Bragado, R., Elazab, A., Zhou, B., Serret, M. D., Bort, J., Nieto-Taladriz, M. T. & Araus, J. L. (2014). Contribution of the ear and the flag leaf to grain filling in durum wheat inferred from the carbon isotope signature, genotypic and growing conditions effects. Journal of Integrative Plant Biology 56, 444455.CrossRefGoogle ScholarPubMed
Serret, M. D., Ortiz-Monasterio, I., Pardo, A. & Araus, J. L. (2008). The effect of urea fertilization and genotype on yield, NUE, δ 15N and δ 13C in wheat. Annals of Applied Biology 153, 243257.Google Scholar
Spaner, D., Todd, A. G., Navabi, A., McKenzie, D. B. & Goonewardene, L. A. (2005). Can leaf chlorophyll measures at differing growth stages be used as an indicator of winter wheat and spring barley nitrogen requirements in eastern Canada? Journal of Agronomy and Crop Science 191, 393399.Google Scholar
Tambussi, E. A., Nogués, S., Ferrio, P., Voltas, J. & Araus, J. L. (2005). Does higher yield potential improve barley performance in Mediterranean conditions?: a case study. Field Crops Research 91, 149160.Google Scholar
Tambussi, E. A., Bort, J., Guiamet, J. J., Nogués, S. & Araus, J. L. (2007). The photosynthetic role of ears in C3 cereals, metabolism, water use efficiency and contribution to grain yield. Critical Reviews in Plant Sciences 26, 116.Google Scholar
Xiao, Y. G., Qian, Z. G., Wu, K., Liu, J. J., Xia, X. C., Ji, W. Q. & He, Z. H. (2012). Genetic gains in grain yield and physiological traits of winter wheat in Shandong province, China, from 1969 to 2006. Crop Science 52, 4456.Google Scholar
Yang, W. P., Guo, T. C., Liu, S. B., Wang, C. Y., Wang, Y. H. & Ma, D. Y. (2008). Effects of row spacing in winter wheat on canopy structure and microclimate in later growth stage. Chinese Journal of Plant Ecology 32, 485490, (Chinese Version).Google Scholar
Ye, Y. L., Wang, G. L., Zhu, Y. J., Li, H. H. & Huang, Y. F. (2010). Effects of nitrogen fertilization on population dynamics, soil nitrogen and yield of high-yielding wheat. Ying Yong Sheng Tai Xue Bao 21, 351358, (Chinese Version).Google Scholar
You, L., Rosegrant, M. W., Wood, S. & Sun, D. (2009). Impact of growing season temperature on wheat productivity in China. Agricultural and Forest Meteorology 149, 10091014.Google Scholar
Yousfi, S., Serret, M. D., Márquez, A. J., Voltas, J. & Araus, J. L. (2012). Combined use of δ 13C, δ 18O and δ 15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit. New Phytologist 194, 230244.CrossRefGoogle Scholar
Yousfi, S., Serret, M. D. & Araus, J. L. (2013). Comparative response of δ 13C, δ 18O and δ 15N in durum wheat exposed to salinity at the vegetative and reproductive stages. Plant, Cell & Environment 36, 12141227.Google Scholar
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.CrossRefGoogle Scholar
Zheng, T. C., Zhang, X. K., Yin, G. H., Wang, L. N., Han, Y. L., Chen, L., Huang, F., Tang, J. W., Xia, X. C. & He, Z. H. (2011). Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008. Field Crops Research 122, 225233.Google Scholar
Zhou, Y., He, Z. H., Sui, X. X., Xia, X. C., Zhang, X. K. & Zhang, G. S. (2007). Genetic improvement of grain yield and associated traits in the northern China winter wheat region from 1960 to 2000. Crop Science 47, 245253.Google Scholar
Zhou, B., Sanz-Sáez, A., Elazab, A., Shen, T. M., Sánchez-Bragado, R., Bort, J., Serret, M. D. & Araus, J. L. (2014). Physiological traits related with the recent increase in yield potential of winter wheat from Henan province, China. Journal of Integrative Plant Biology 56, 492504.Google Scholar