Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T23:25:11.106Z Has data issue: false hasContentIssue false

Influence of short-term Leucaena leucocephala feeding on milk yield and its composition, thyroid hormones, enzyme activity, and secretion of mimosine and its metabolites in milk of cattle

Published online by Cambridge University Press:  24 April 2007

M. K. GHOSH*
Affiliation:
Dairy Cattle Division, National Dairy Research Institute, Karnal – 132001 (Haryana) India NRC-Yak, ICAR, Dirang – 790 101, Arunachal Pradesh, India
P. P. ATREJA
Affiliation:
Dairy Cattle Division, National Dairy Research Institute, Karnal – 132001 (Haryana) India
R. BURAGOHAIN
Affiliation:
Dairy Cattle Division, National Dairy Research Institute, Karnal – 132001 (Haryana) India
S. BANDYOPADHYAY
Affiliation:
NRC-Yak, ICAR, Dirang – 790 101, Arunachal Pradesh, India
*
*To whom all correspondence should be addressed. Email: monojghsh@yahoo.co.in

Summary

Four Karan/Friesian crossbred (Holstein×Tharparkar) dairy cows in late lactation (>200 days) were fed a basic diet of green maize and concentrates with an increasing proportion of Leucaena leucocephala (leucaena) leaf meal (LLM). The proportion was gradually increased from 0·25 of the dry matter intake (DMI) in the first week to 0·50 in the second, 0·75 in the third and ad libitum in the fourth week. Mimosine, 3,4-dihydroxy pyridine (3,4-DHP) and 2,3-dihydroxy pyridone (2,3-DHP) levels were determined in milk, serum, urine and faecal samples. On average DMI of leucaena was 0·023–0·025, 0·025–0·027, 0·027–0·028 and 0·022–0·025 of live weight (LW) during the first, second, third and fourth week, respectively. Mimosine, 3,4-DHP and 2,3-DHP appeared in the blood serum during leucaena feeding and continued appearing up to sixth week of experimental feeding even after the withdrawal of leucaena from the 34th day onwards. Similarly, excretion of mimosine, 3,4-DHP and 2,3-DHP were observed even after withdrawal of leucaena from the diet. The feeding of LLM resulted in a reduced level of T3 (Triiodothyronine) and T4 (Thyroxine) within a week of LLM feeding. The level of T3 and T4 improved to normal after withdrawal of LLM from the diet. The serum aspartate transferase (AST) and serum alanine transferase (ALT) activities were within the normal range. Leucaena feeding improved milk yield and composition only up to 3 weeks of feeding. The concentration of mimosine, 3,4-DHP and 2,3-DHP in milk was 0·33, 0·05 and 0·02 that of blood, respectively. The secretion of mimosine, 3,4-DHP and 2,3-DHP in the milk might be a concern for health of the offspring of leucaena-fed animals as well as human beings consuming such milk.

Type
Animals
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AOAC (Association of Official Analytical Chemists) (1984). Official Methods of Analysis. 14th Edn. Washington D.C., USA: AOAC.Google Scholar
Benjamin, M. M. (1985). Test for liver function. In Outlines of Veterinary Clinical Pathology. 3rd Edn, pp. 233254. New Delhi, India: Kalyani Publishers.Google Scholar
Blunt, C. G. & Jones, R. J. (1977). Steer liveweight gains in relation to the proportion of time on Leucaena leucocephala pastures. Tropical Grasslands 11, 159164.Google Scholar
Cheeke, P. R. (1997). Natural Toxicants in Feeds, Forages and Poisonous Plants. Danville, Illionis, USA: Interstate Publishers.Google Scholar
Cheeke, P. R. & Shull, L. R. (1985). Natural Toxicants in Feeds and Poisonous Plants. Wesport, Connecticut, USA: AVI Publishing Company, Inc.Google Scholar
Deshmukh, S. V., Gaffar, M. A. & Shah, A. A. (1983). Studies on chemical composition and nutritive value of Subabul (Leucaena leucocephala) in sheep. Livestock Advisor 8, 1317.Google Scholar
D'Mello, J. P. F. (1992). Chemical constraints to the use of tropical legumes in animal nutrition. Animal Feed Science and Technology 38, 237261.CrossRefGoogle Scholar
Feng, D. Y. & Atreja, P. P. (1998). Comparative ruminal degradation of mimosine and DHP in cattle and buffalo. Indian Journal of Animal Nutrition 15, 122125.Google Scholar
Flores, J. F., Stobbs, T. H. & Minson, D. J. (1979). The influence of the legume Leucaena leucocephala and formal-caesin on the production and composition of milk from grazing cows. Journal of Agricultural Sciences, Cambridge 92, 351357.Google Scholar
Garcia de, H. M., Sanchez, C., Colmenarez, J. & Beltran, E. (1994). Supplementación a pastoreo de Leucaena leucocephala en vacas mestizas de doble propósito en el Valle de Aroa, Venezuela. Zootecnia Tropical 12, 205224.Google Scholar
Garcia de, H. M., Sanchez, C., Colmenarez, J., Monslave, M. R. & Sierratta, R. (1995). Effecto de la supplementación de Leucaena leucocephala sobre la producción de leche en vacas mestizas de doble propósito en el Valle de Aroa. Revista Argentina de Producción Animal 15, 415417.Google Scholar
Garg, M. C. & Kumar, S. (1994). Effects of replacement of oilcake protein in concentrate mixture by Leucaena leucocephala leaf meal on the nutrient utilization and milk yield in murrah buffaloes. Indian Journal of Animal Nutrition 11, 4346.Google Scholar
Girdhar, N., Lall, D. & Pathak, N. N. (1991). Effect of feeding Leucaena leucocephala as the sole ration on nutrient utilization and body weight in goats. Journal of Agricultural Sciences, Cambridge 116, 303307.Google Scholar
Gupta, B. K., Gupta, R. P. & Malik, N. S. (1988). Effect of replacement of green lucern with subabul (Leucaena leucocephala) leaf meal in the diet on nutrient utilization and growth in buffalo calves. Indian Journal of Animal Nutrition 5, 202206.Google Scholar
Gupta, H. & Atreja, P. P. (1998). Influence of gradual adaptation of cattle to leucaena leucocephala leaf meal on biogradation of mimosine and 3-hydroxy-4 (1H) pyridine in rumen, their levels in blood, fate and influence of absorbed DHP on thyroid hormones and liver enzymes. Animal Feed Science Technology 74, 2943.Google Scholar
Gupta, P. C., Akbar, M. A. & Vidyasagar, (1986). Subabul (Leucaena leucocephala): a new feed resource, In: Department of Animal Nutrition Technical Bulletin, Hisar, India: Haryana Agricultural University.Google Scholar
Hamilton, R. I., Donaldson, L. E. & Lambourne, L. J. (1971). Leucaena leucocephala as a feed for dairy cows: direct effect on reproduction and residual effect on the calf and lactation. Australian Journal of Agricultural Research 22, 681692.CrossRefGoogle Scholar
Haque, N., Varshney, V. P., Khan, M. Y. & Lal, M. (1996). Effect of feeding Leucaena leucocephala supplemented rations on thyroid hormones and fasting heat production in Jamunapari goats. Small Ruminant Research 19, 2933.CrossRefGoogle Scholar
Hegarty, M. P., Schinckel, P. G. & Court, R. D. (1964). Reaction of sheep to the consumption of Leucaena glauca Benth, and to its toxic principal mimosine. Australian Journal of Agricultural Research 15, 153167.Google Scholar
Hegarty, M. P., Lee, C. R., Christie, G. S., Court, R. D. & Haydock, K. P. (1979). The goitrogen 3-hydroxy 4-(1H) pyridine, a ruminal metabolite from Leucaena leucocephala: effects in mice and rat. Australian Journal of Biological Sciences 32, 2740.Google Scholar
Hutton, E. M. & Beattie, W. M. (1976). Yield characteristics in three bred lines of the Leucaena leucocephala. Tropical Grasslands 10, 187194.Google Scholar
ISI (1962). IS: 1479 (Part II). Methods of Test for Dairy Industry. Manak Bhavan, New Delhi, India: Indian Standards Institution.Google Scholar
Jones, R. J. (1979). Value of Leucaena leucocephala as a feed for ruminants in the tropics. World Animal Review 31, 1323.Google Scholar
Jones, R. J. & Jones, R. M. (1982). Observations on the persistence and potential for beef production of pastures based on Trifolium semipilosum and Leucaena leucocephala in sub-tropical coastal Queenland. Tropical Grassland 16, 2429.Google Scholar
Jones, R. J. & Hegarty, M. P. (1984). The effects of different proportions of Leucaena leucocephala in the diet of cattle on growth, feed intake, thyroid function and urinary excretion of 3-hydroxy 4 (1H)-pyridone. Australian Journal of Agricultural Research 35, 317325.CrossRefGoogle Scholar
Jordan, H., Cino, D. M. & Roque, A. (1995). A note on the behaviour of dairy cows in protein banks of Leucaena leucocephala during dry period. Cuban Journal of Agricultural Science 29, 1922.Google Scholar
Kearl, L. C. (1982). Nutrient Requirements of Ruminants in Developing Countries. Logan, Utah, USA: International Feedstuffs Institute, Utah State University.Google Scholar
Lowry, J. B., Tangendjaja, B. & Maryanto, B. (1983). Autolysis of mimosine to 3-hydroxy-4 (1H) pyridone in green tissues of Leucaena leucocephala. Journal of Science of Food and Agriculture 34, 529533.CrossRefGoogle Scholar
McDonald, P., Edwards, R. A., Greenhalgh, J. F. D. & Morgan, C. A. (1995). Animal Nutrition, 5th Edn. Harlow, Essex, UK: Longman Scientific and Technical.Google Scholar
Pathak, V. P., Bansal, S. K., Johri, C. B. & Rai, G. S. (1988). Ruminal, biochemical and microbial changes on sole feeding of Leucaena leucocephala to young Hariana calves and adult Murrah buffaloes. Indian Veterinary Journal 65, 540542.Google Scholar
Rai, S. N., Walli, T. K., Srivastava, A. & Verma, G. S. (1994). Effect of replacement of groundnut cake protein by leucaena leaf meal on milk production performance in goats during early lactation. Indian Journal of Animal Nutrition 11, 149154.Google Scholar
Ram, J. J., Atreja, P. P., Chhabra, A. & Chopra, R. C. (1994). Mimosine degradation in calves fed sole diet of Leucaena leucocephala in India. Tropical Animal Health Production 26, 199206.CrossRefGoogle ScholarPubMed
Richards, D. E., Brown, W. F., Ruegsegger, G. & Bates, D. B. (1994). Replacement value of tree legumes for concentrates in forage-based diets. II. Replacement value of Leucaena leucocephala and Gliricidia sepium for lactation goats. Animal Feed Science and Technology 46, 5365.Google Scholar
Rodriguez, N. M. & Borges, I. (1989). Apparent digestibility, dynamics of rumen fermentation and sites of digestion of hay of Leucaena leucocephala (Lam.) De wit cv. Peru. In Proceedings of the XVIth International Grassland Congress, pp. 931932. Nice, France.Google Scholar
Samanta, A. K., Chopra, R. C., Atreja, P. P. & Chhabra, A. (1994). An attempt to inactivate mimosine of Leucaena leucocephala by mineral supplementation for feeding to ruminants. Animal Feed Science and Technology 50, 157165.CrossRefGoogle Scholar
Senani, S., Joshi, D. C., Singh, R. & Chattopadhyay, S. K. (1996). Effect of long-term feeding of subabul (Leucaena leucocephala) on Barbari goats. Indian Journal of Animal Sciences 66, 494498.Google Scholar
Senani, S. & Joshi, D. C. (1995). Nutrient utilization in Barbari kids fed different levels of Leucaena leucocephala. Indian Journal of Animal Nutrition 12, 189194.Google Scholar
Singh, H. K. & Mudgal, V. D. (1967). Chemical composition and nutritive value of Leucaena glauca (white popinac). Indian Journal of Dairy Science 20, 191195.Google Scholar
Sobale, B. N., Kharat, S. T., Prasad, V. L., Joshi, A. L., Rangnekar, D. V. & Deshmukh, S. S. (1978). Nutritive value of Leucaena leucocephala for growing bull calves. Tropical Animal Health Production 10, 237241.Google Scholar
Talpada, P. M., Gupta, R. S., Murthy, K. S., Patel, D. C., Desai, H. B., Patel, G. R. & Desai, M. C. (1994). Effect of incorporation of subabul (Leucaena leucocephala) seeds in concentrate mixtures of lactating crossbred cows. Indian Journal of Animal Nutrition 11, 199203.Google Scholar
Tangendjaja, B. & Wills, R. B. H. (1983). Analysis of mimosine and 3, 4 DHP in plasma by high performance liquid chromatroghaphy. Journal of Chromatography 265, 143144.CrossRefGoogle Scholar
Tangendjaja, B. & Wills, R. B. H. (1980). Analysis of mimosine and 3, 4 DHP by high performance liquid chromatography. Journal of Chromatography 202, 317318.CrossRefGoogle Scholar
Upadhyaya, V. S., Rekib, A. & Pathak, P. S. (1974). Nutritive value of Leucaena leucocephala (Lam.) de wit. Indian Veterinary Journal 51, 534537.Google Scholar