Published online by Cambridge University Press: 12 April 2002
Experiments in three dry years, 1993/94, 1994/95 and 1995/96, on a medium sand at ADAS Gleadthorpe, England, tested responses of six winter wheat cultivars to irrigation of dry-matter growth, partitioning of dry matter to leaf, stem and ear throughout the season, and to grain at final harvest. Cultivars (Haven, Maris Huntsman, Mercia, Rialto, Riband and Soissons) were selected for contrasts in flowering date and stem soluble carbohydrate. Maximum soil moisture deficit (SMD) exceeded 140 mm in all years, with large deficits (>75 mm) from early June in 1994 and from May in 1995 and 1996. The main effects of drought on partitioning of biomass were for a decrease in the proportion of the crop as lamina in the pre-flowering period, and then earlier retranslocation of stem reserves to grains during the first half of grain filling. Restricted water availability decreased grain yield by 1·83 t/ha in 1994 (P<0·05), and with more prolonged droughts, by 3·06 t/ha in 1995 (P<0·001) and by 4·55 t/ha in 1996 (P<0·001). Averaged over the three years, grain yield responses of the six cultivars differed significantly (P<0·05). Rialto and Mercia lost only 2·8 t/ha compared with Riband and Haven which lost 3·5 t/ha. Losses for Soissons and Maris Huntsman were intermediate. In the two years with prolonged drought, the biomass depression was on average greater for Haven (6·0 t/ha) than for Maris Huntsman (4·2 t/ha) (P<0·05). Thus, the grain yield sensitivity of Haven to drought derived, in part, from a sensitivity of biomass growth to drought. Harvest index (HI; ratio of grain to above-ground dry matter at harvest) responses of the six cultivars to irrigation also differed (P<0·05) and contributed to the yield responses. The smallest decrease in HI of the six cultivars with restricted water availability was shown by Rialto (−0·033); this partially explained the drought resistance for this cultivar. The largest decrease was for Maris Huntsman (−0·072). The cultivars differed in flowering dates by up to 9 days but these were poorly correlated with grain yield responses to irrigation. Stem soluble carbohydrate at flowering varied amongst cultivars from 220 to 300 g/m2 in the unirrigated crop; greater accumulation appeared to be associated with better maintenance of HI under drought. It is concluded that high stem-soluble carbohydrate reserves could be used to improve drought resistance in the UK's temperate climate, but that early flowering seems less likely to be useful.