Skip to main content Accessibility help
×
Home

Greenhouse Gas Emissions and Technical Efficiency in Alberta Dairy Production: What Are the Trade-Offs?

  • Stephanie Le (a1), Scott Jeffrey (a1) and Henry An (a1)

Abstract:

The impact of greenhouse gas (GHG) reduction on the efficiency of Alberta’s dairy industry is assessed through a technical efficiency analysis over the period 1996–2016, with and without emissions included as a “bad” output. Environmentally adjusted technical efficiency and technical efficiency estimates are highly correlated; thus, reducing GHG emissions may not result in decreased efficiency. Increased milk per cow, a southern Alberta location, and increased use of forage are associated with greater environmentally adjusted technical efficiency. The opportunity cost of foregone milk revenue associated with reduced emissions is Can$308.29 per metric ton of GHG. The results imply possible policy strategies to reduce emissions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Greenhouse Gas Emissions and Technical Efficiency in Alberta Dairy Production: What Are the Trade-Offs?
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Greenhouse Gas Emissions and Technical Efficiency in Alberta Dairy Production: What Are the Trade-Offs?
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Greenhouse Gas Emissions and Technical Efficiency in Alberta Dairy Production: What Are the Trade-Offs?
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author. Email: scott.jeffrey@ualberta.ca

References

Hide All
Alberta Environment. “Quantification Protocol for Emission Reductions from Dairy Cattle.” 2010. Internet site: https://open.alberta.ca/dataset/9780778588221 (Accessed October 29, 2019).
Milk, Alberta. Alberta Milk Producer Policy Handbook. Alberta Milk, 2019. Internet site: https://albertamilk.com/wp-content/uploads/2018/02/2018-Producer-Policy-Handbook-Final.pdf (Accessed October 29, 2019).
Arandia, A., and Aldanondo-Ochoa, A.. “Pollution Shadow Prices in Conventional and Organic Farming: An Application in a Mediterranean Context.” Spanish Journal of Agricultural Research 9, 2(2011):363–76.
Bank of Canada. “Historical Noon and Closing Rates.” 2017. Internet site: http://www.bankofcanada.ca/?p=190915 (Accessed October 29, 2019).
Battese, G.E., and Coelli, T.J.. “A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data.” Empirical Economics 20, 2(1995):325–32.
Battese, G.E., Prasada Rao, D.S., and O’Donnell, C.J.. “A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating under Different Technologies.” Journal of Productivity Analysis 21, 1(2004):91103.
Beauchemin, K.A., Janzen, H.H., Little, S.M., McAllister, T.A., and McGinn, S.M.. “Mitigation of Greenhouse Gas Emissions from Beef Production in Western Canada – Evaluation Using Farm-Based Life Cycle Assessment.” Animal Feed Science and Technology 166–167(June 2011):663–77.
Beauchemin, K.A., Kreuzer, M., O’Mara, F., and McAllister, T.A.. “Nutritional Management for Enteric Methane Abatement: A Review.” Animal Production Science 48, 2(2008):2127.
Boadi, D., Benchaar, C., Chiquette, J., and Massé, D.. “Mitigation Strategies to Reduce Enteric Methane Emissions from Dairy Cows: Update Review.” Canadian Journal of Animal Science 84, 3(2004):319–35.
Cabrera, V.E., Solis, D., and Del Corral, J.. “Determinants of Technical Efficiency among Dairy Farms in Wisconsin.” Journal of Dairy Science 93, 1(2010):387–93.
Cameron, L., Chagunda, M.G.G., Roberts, D.J., and Lee, M.A.. “A Comparison of Milk Yields and Methane Production from Three Contrasting High-Yielding Dairy Cattle Feeding Regimes: Cut-and-Carry, Partial Grazing and Total Mixed Ration.” Grass and Forage Science 73, 3(2018):789–97.
Canadian Dairy Information Centre. “Canada’s Dairy Industry at a Glance.” 2019. Internet site: http://www.dairyinfo.gc.ca/index_e.php?s1=cdi-ilc&s2=aag-ail (Accessed October 29, 2019).
Cloutier, L.M., and Rowley, R.. “Relative Technical Efficiency: Data Envelopment Analysis and Quebec’s Dairy Farms.” Canadian Journal of Agricultural Economics 41, 2(1993):169–76.
Coelli, T., and Henningsen, A.. frontier: Stochastic Frontier Analysis. R package version 1.1-2. 2019 Internet site: https://CRAN.R-Project.org/package=frontier (Accessed October 29, 2019).
Coelli, T.J., Prasada Rao, D.S., O’Donnell, C.J., and Battese, G.E.. An Introduction to Efficiency and Productivity Analysis. 2nd ed. New York: Springer Science, 2005.
Cottle, D.J., and Wiedemann, S.G.. “Ruminant Enteric Methane Mitigation: A Review.” Animal Production Science 51, 6(2011):491514.
Cuesta, R.A., Knox Lovell, C.A., and Zofío, J.L.. “Environmental Efficiency Measurement with Translog Distance Functions: A Parametric Approach.” Ecological Economics 68, 8–9(2009):2232–42.
Cuesta, R.A., and Zofío, J.L.. “Hyperbolic Efficiency and Parametric Distance Functions: With Application to Spanish Savings Banks.” Journal of Productivity Analysis 24, 1(2005):3148.
Dayananda, C. “Technical and Environmental Efficiencies of Ontario Dairy Farming Systems.” Master’s thesis, University of Guelph, Guelph, ON, 2016.
Diewert, D.E.Fisher Ideal Output, Input, and Productivity Indexes Revisited.” Journal of Productivity Analysis 3, 3(1992):211–48.
Eckard, R., Grainger, C., and de Klein, C.A.M.. “Options for the Abatement of Methane and Nitrous Oxide from Ruminant Production: A Review.” Livestock Science 130, 1–3(2010):4756.
Gozho, G.N., Krause, D.O., and Plaizier, J.C.. “Ruminal Lipopolysaccharide Concentration and Inflammatory Response during Grain-Induced Subacute Ruminal Acidosis in Dairy Cows.” Journal of Dairy Science 90, 2(2007):856–66.
Guyader, J., Little, S., Kröbel, R., Benchaar, C., and Beauchemin, K.A.. “Comparison of Greenhouse Gas Emissions from Corn- and Barley-Based Dairy Production Systems in Eastern Canada.” Agricultural Systems 152(March 2017):3846.
Hailu, G., Jeffrey, S.R., and Unterschultz, J.. “Cost Efficiency for Alberta and Ontario Dairy Farms: An Inter-regional Comparison.” Canadian Journal of Agricultural Economics 53, 2–3(2005):141–60.
Haines, A., Kovats, R.S., Campbell-Lendrum, D., and Corvalan, C.. “Climate Change and Human Health: Impacts, Vulnerability and Public Health.” Public Health 120, 7(2006):585–96.
International Dairy Federation. A Common Carbon Footprint Approach for the Dairy Sector: The IDF Guide to Standard Life Cycle Assessment Methodology. Bulletin of the International Dairy Federation 479/2015. 2015. Internet site: https://www.fil-idf.org/wp-content/uploads/2016/09/Bulletin479-2015_A-common-carbon-footprint-approach-for-the-dairy-sector.CAT.pdf (Accessed October 29, 2019).
Jiang, N., and Sharp, B.. “Cost Efficiency of Dairy Farming in New Zealand: A Stochastic Frontier Analysis.” Agricultural and Resource Economics Review 43, 3(2014):406–18.
Jiang, N., and Sharp, B.. “Technical Efficiency and Technological Gap of New Zealand Dairy Farms: A Stochastic Meta-Frontier Model.” Journal of Productivity Analysis 44, 1(2015):3949.
Johansson, H.Technical, Allocative, and Economic Efficiency in Swedish Dairy Farms: The Data Envelopment Analysis versus the Stochastic Frontier Approach.” Paper presented at the International Congress of the European Association of Agricultural Economists, Copenhagen, Denmark, August 2005.
Knapp, J.R., Laur, G.L., Vadas, P.A., Weiss, W.P., and Tricarico, J.M.. “Invited Review: Enteric Methane in Dairy Cattle Production: Quantifying the Opportunities and Impact of Reducing Emissions.” Journal of Dairy Science 97, 6(2014):3231–61.
Little, S., Linderman, J., Maclean, K., and Janzen, H.. Holos – A Tool to Estimate and Reduce Greenhouse Gases from Farms. Methodology and Algorithms for Versions 1.1.x. Agriculture and Agri-Food Canada, No. A52-136/2008E-PDF, 2008. Internet site: http://publications.gc.ca/pub?id=9.691658&sl=0 (Accessed October 29, 2019).
Mamardashvili, P., Emvalomatis, G., and Jan, P.. “Environmental Performance and Shadow Value of Polluting on Swiss Dairy Farms.” Journal of Agricultural and Resource Economics 41, 2(2016):225–46.
Mbaga, M.D., Romain, R.., Larue, B., and Lebel, L.. “Assessing Technical Efficiency of Quebec Dairy Farms.” Canadian Journal of Agricultural Economics 51, 1(2003):121–37.
Mosheim, R., and Lovell, C.A.. “Scale Economies and Inefficiency of US Dairy Farms.” American Journal of Agricultural Economics 91, 3(2009):777–94.
Njuki, E., and Bravo-Ureta, B.E.. “The Economic Costs of Environmental Regulation in US Dairy Farming: A Directional Distance Function Approach.” American Journal of Agricultural Economics 97, 4(2015):10871106.
Reinhard, S., Knox Lovell, C.A., and Thijssen, G.. “Econometric Estimation of Technical and Environmental Efficiency: An Application to Dutch Dairy Farms.” American Journal of Agricultural Economics 81, 1(1999):4460.
Shortall, O.K., and Barnes, A.P.. “Greenhouse Gas Emissions and the Technical Efficiency of Dairy Farmers.” Ecological Indicators 29(June 2013):478–88.
Singbo, A., and Larue, B.. “Scale Economies, Technical Efficiency, and the Sources of Total Factor Productivity Growth of Quebec Dairy Farms.” Canadian Journal of Agricultural Economics 64, 2(2016):339–63.
Slade, P., and Hailu, G.. “Efficiency and Regulation: A Comparison of Dairy Farms in Ontario and New York State.” Journal of Productivity Analysis 45, 1(2016):103–15.
Statistics Canada. Table 004-0213, Census of Agriculture, Hay and Field Crops. CANSIM (database). Using CHASS (distributor). 2017. Internet site: http://dc2.chass.utoronto.ca/chasscansim/ (Accessed October 29, 2019).
Statistics Canada. Table 176-0043, Financial Market Statistics. CANSIM (database). Using CHASS (distributor). 2019a. Internet site: http://dc2.chass.utoronto.ca/chasscansim/ (Accessed October 29, 2019).
Statistics Canada. Table 326-0020, Consumer Price Index. CANSIM (database). Using CHASS (distributor). 2019b. Internet site: http://dc2.chass.utoronto.ca/chasscansim/ (Accessed October 29, 2019).
Van Biert, P.A.Dairy Cost Study: The Economics of Milk Production in Alberta 2016. Vol. 76. Alberta Agriculture and Forestry, Economics and Competitiveness Branch, Economics Section, 2017. Internet site: https://open.alberta.ca/dataset/abca66b6-d117-4ee2-8615-248fcb53262c/resource/e29d0a9f-c88a-4d2b-b322-5b72b2d95497/download/16production.pdf (Accessed October 29, 2019).
Vardanyan, M., and Noh, D.W.. “Approximating Pollution Abatement Costs via Alternative Specifications of a Multi-output Production Technology: A Case of the US Electric Utility Industry.” Journal of Environmental Management 80, 2(2006):177–90.
Vergé, X.P.C., Dyer, J.A., Desjardins, R.L., and Worth, D.. “Greenhouse Gas Emissions from the Canadian Dairy Industry in 2001.” Agricultural Systems 94, 3(2007):683–93.
Weersink, A., Turvey, C.G., and Godah, A.. “Decomposition Measures of Technical Efficiency for Ontario Dairy Farms.” Canadian Journal of Agricultural Economics 38, 3(1990):439–56.
Weiske, A., Vabitsch, A., Olesen, J.E., Schelde, K., Michel, J., Friedrich, R., and Kaltschmitt, M.. “Mitigation of Greenhouse Gas Emissions in European Conventional and Organic Dairy Farming.” Agriculture, Ecosystems and Environment 112,2–3(2006):221–32.
Wettemann, P.J.C., and Latacz-Lohmann, U.. “An Efficiency-Based Concept to Assess Potential Cost and Greenhouse Gas Savings on German Dairy Farms.” Agricultural Systems 152(March 2017):2737.
Williams, S.R.O., Fisher, P.D., Berrisford, T., Moate, P.J., and Reynard, K.. “Reducing Methane On-Farm by Feeding Diets High in Fat May Not Always Reduce Life Cycle Greenhouse Gas Emissions.” International Journal of Life Cycle Assessment 19, 1(2014):6978.

Keywords

Greenhouse Gas Emissions and Technical Efficiency in Alberta Dairy Production: What Are the Trade-Offs?

  • Stephanie Le (a1), Scott Jeffrey (a1) and Henry An (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed