Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-cs4hf Total loading time: 0.24 Render date: 2021-04-18T18:46:48.683Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Neuroleptic induced polydipsia and hyperphagia in an adult with learning disability

Published online by Cambridge University Press:  13 June 2014

Syed Hasan Jawed
Affiliation:
Cherry Orchard House, 35 Hospital Street, Tamworth, Staffordshire B79 7EE, England

Abstract

This case report is of a young male with learning disability, who presented with long-term polydipsia and hyperphagia. The patient's polydipsia and hyperphagia showed a correlation with long-term use of neuroleptics for behavioural problems. Withdrawal of all neuroleptic medication resulted in an immediate improvement in both the polydipsia and hyperphagia leading to a complete resolution of both symptoms. While neuroleptics are a recognised cause of polydipsia, hyperphagia is less frequently described and we believe this to be the first report in which a patient is observed to have polydipsia and hyperphagia induced by neuroleptics. We discuss the possible aetiological mechanisms for both polydipsia and hyperphagia and conclude that the basic pathophysiology in our case appears to be a neuroleptic induced malfunction of the satiety centre due to blockage of dopamine receptors in the ventromedial hypothalamus.

Type
Case Report
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Illowsky, BP, Kirch, DC. Polydipsia and hyponatraemia in psychiatric patients. Am J of Psychiatry 198; 143: 673–83.Google Scholar
2.Rowntree, LU. Water intoxication. Arch Int Medicine 1923; 32: 137–74.CrossRefGoogle Scholar
3.Delva, NJ, Crammer, JL, Javzylo, SVet al.Osteopenia, pathological fractures and increased urinary calcium excretion in schizophrenic patients with polydipsia. Biol Psychiatry 1989; 26: 781–91.CrossRefGoogle Scholar
4.Vieweg, WVR, David, SS, Rowe, WTet al.Psychogenic polydipsia and water intoxication. Biological Psychiatry 1987; 20: 1308–20.CrossRefGoogle ScholarPubMed
5.Blum, A, Tempey, FW, Lynch, WS. Somatic findings in patients with psychogenic polydipsia. J Clin Psychiatry 1983; 44: 3356.Google ScholarPubMed
6.Jos, CJ, Perez-Cruet, S. Incidence and morbidity of self-induced water intoxication in state mental hospital patients. Am S Psychiatry 1979; 136: 221–2.Google Scholar
7.Jos, CJ, Evenson, RC, Mallya, KR. Self-induced water intoxication: A comparison of 34 cases with matched controls. J Clin Psychiatry 1986; 47: 368–70.Google ScholarPubMed
8.Barlow, ED, Dewardener, HE. Compulsive water drinking. Q J Med 1959; 110: 235–58.Google Scholar
9.Bremner, AS, Regan, A. Intoxicated by water. Br J Psychiatry 1991; 158: 244–50.CrossRefGoogle Scholar
10.Deb, S, Bramble, D, Drybala, Get al.Polydipsia amongst adults with learning disability in an institution. Journal of Intellectual Disability Research 1994; 38: 359–67.CrossRefGoogle Scholar
11.Glusac, MD, Patel, H, Josef, NCet al.Polydipsia and hyponatraemia induced by multiple neuroleptics but not molidine. Can J Psychiatry 1990; 35: 268–9.CrossRefGoogle ScholarPubMed
12.Nishikawa, T, Tsuda, A, Tanaka, Met al.Evidence for a direct adverse reaction of neuroleptics in self-induced water intoxication of psychiatric patients. Kurume Med J 1991: 38(4): 307–10.CrossRefGoogle ScholarPubMed
13.Rao, KJ, Miller, M, Mosses, A. Water intoxication and thioridazine. Ann Internal Med 1975; 82: 61–3.CrossRefGoogle ScholarPubMed
14.Shen, WW. and Sata, LS. Hypothalamic dopamine receptor supersensitivity? A pilot study of self induced water intoxication. Psychiatr J University of Ottawa 1983; 8: 154–8.Google ScholarPubMed
15.Hobson, SA, English, JT. Self-induced water intoxication. Ann Int Med 1963; 58: 324–32.CrossRefGoogle Scholar
16.Umbricht, DS, Saltz, B, Pollack, Set al.Polydipsia and tardive dyskinesia in chronic psychiatric patients – related disorders? Am J Psychiatry 1994; 151, 1716–7.CrossRefGoogle Scholar
17.Sandifer, MG. Hyponatremia due to psychotropic drugs. J Cl Psychiatry 1983; 44: 301–33.Google ScholarPubMed
18.Erickson, RK, Brown, FD, Schaible, KL, et al.The effect of foetal hypothalamus grafts on weight gain resulting from lesions of the ventro-medial hypothalamus. J Neurosurgery 1988; 68: 112–6.CrossRefGoogle Scholar
19.Beverly, JL, Martin, RS. Increased GABA stunt activity in VMN of three hyperphagic rat models. Am J Physiology 1989; 256: R1225R1231.Google Scholar
20.Hope, RA, Allaman, P. Hyperphagia in dementia. Fluvoxamine takes the biscuit. J Neurology, Neurosurgery and Psychiatry 1991; 54(1): 88.CrossRefGoogle ScholarPubMed
21.Hutson, PH, Dourish, CT, Curzon, G. Neurochemical and behavioural evidence for mediation of the hyperphagic action of 8-OH-DPAT by 5-HT cell body autoreceptors. Eur J Pharmacology 1986; 129: 347–52.CrossRefGoogle Scholar
22.Skuse, D, Albanese, A, Stanhope, Ret al.A new stress-related syndrome of growth failure and hyperphagia in children, associated with reversibility of growth-hormone insufficiency. Lancet 1996; 348: 1104–5.CrossRefGoogle Scholar
23.Chesson, AL, Levine, SN, Kong, LSet al.Neuroendocrine evaluation in Kleine-Levin syndrome: evidence of reduced dopaminergic tone during periods of hypersomnolence. Sleep 1991; 14: 226–32.Google ScholarPubMed
24.Hernandez, L, Parada, M, Hoebel, BG. Amphetamine-induced hyperphagia and obesity caused by intraventricular or lateral hypothalamic injections in rats. J Pharmacology and Experimental Therapeutics 1983; 227: 524–30.Google ScholarPubMed
25.Molloy, AG, Waddincton, JL. Behavioural responses to the selective D–dopamine receptor against R-Sk&F 38393 and the selective D2-against RV 24213 in young compared with aged rats. Br J Pharmacology 1988; 95: 335–42.CrossRefGoogle Scholar
26.Sugimoto, Y, Yamada, S, Yoshikawa, Tet al.Effects of peripheral 5-HT2 and 5-HT3 receptor agonists on food intake in food-deprived and 2-deoxy-D glucose-treated rats. Eur J Pharmacology 1996; 316, 1521.CrossRefGoogle ScholarPubMed
27.Carruba, MO, Mantegazza, P, Memo, Met al.Peripheral and central mechanisms of action of serotoninergic anoretic drugs. Appetite 1986; Suppl 7: 105–13.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 18th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Neuroleptic induced polydipsia and hyperphagia in an adult with learning disability
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Neuroleptic induced polydipsia and hyperphagia in an adult with learning disability
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Neuroleptic induced polydipsia and hyperphagia in an adult with learning disability
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *