Skip to main content Accessibility help
×
Home

Secondary Invasion and Reinvasion after Russian-Olive Removal and Revegetation

  • Erin K. Espeland (a1), Jennifer M. Muscha (a2), Joseph Scianna (a3), Robert Kilian (a3), Natalie M. West (a1) and Mark K. Petersen (a2)...
  • Please note a correction has been issued for this article.

Abstract

Russian-olive is a nitrogen-fixing tree invading riparian corridors in western North America. The premise of revegetation after weed removal is that revegetation is required to return native species to a removal site and that revegetation improves site resistance to invasion or reinvasion via competitive exclusion. Therefore, we expected that revegetation would reduce invasive species cover and increase native species cover compared with non-revegetated controls. Native understory species diversity increased with time since removal. We recorded 18.2 native species in 2012, and 28.2 native species in 2016. Out of 22 planted species, 2 did not establish. Diversity in revegetated plots did not differ from unplanted controls, likely because species spread quickly across plot boundaries. Native perennial grass, seeded species, and annual bromes increased over time, while nonnative forbs and native forbs decreased over time. Only invasive perennial grass cover responded to the revegetation treatment with cover much higher in controls compared with revegetated plots (25.7% vs. 7.7%); this was likely a response to a preplanting herbicide treatment. All categories of species diversity except invasive species diversity increased over time. Only 4% of Russian-olive stumps resprouted in the first year of removal, less than 1% resprouted 2 yr after removal. There was no Russian-olive emergence from seed in the removal year, and seed emergence varied exponentially among following years. Seeded native species did not have trouble establishing once adequate spring moisture occurred in the second growing season after Russian-olive removal, indicating that removal did not present substantial obstacles to successful revegetation. Follow-up control of Russian-olive is critical after initial treatment.

Copyright

Corresponding author

*Corresponding author’s E-mail: Jennifer.Muscha@ars.usda.gov

Footnotes

Hide All

Associate Editor for this paper: Stephen F. Enloe, University of Florida.

Footnotes

References

Hide All
Andersen, DC (2005) Characterizing flow regimes for floodplain forest conservation: an assessment of factors affecting sapling growth and survivorship on three cold desert rivers. Can J Forest Res 35:28862899
Barker, WT, Whitman, WC (1988) Vegetation of the northern Great Plains. Rangelands 10:266272
Bean, D, Norton, A, Jashenko, R, Schaffner, U (2008) Status of Russian olive biological control in North America. Ecol Restor 26:105107
Blanchard, R, Holmes, PM (2008) Riparian vegetation recovery after invasive alien tree clearance in the Fynbos Biome. S Afr J Bot 74:421431
Bradley, CE, Smith, DG (1986) Plains cottonwood recruitment and survival on a prairie meandering river floodplain, Milk River, southern Alberta and northern Montana. Can J Bot 64:14331442
Corbin, JD, D’Antonio, CM (2004) Effects of exotic species on soil nitrogen cycling: implications for restoration 1. Weed Technol 18:14641467
Corenblit, D, Tabacchi, E, Steiger, J, Gurnell, AM (2007) Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: a review of complementary approaches. Earth-Sci Rev 84:5686
de Abreu, RC, Durigan, G (2011) Changes in the plant community of a Brazilian grassland savannah after 22 years of invasion by Pinus elliottii Engelm. Plant Ecol Divers 4:269278
DeMeester, JD, Richter, D deB (2010) Restoring restoration: removal of the invasive plant Microstegium vimineum from a North Carolina wetland. Biol Invasions 12:781793
Denslow, JS, D’Antonio, CM (2005) After biocontrol: assessing indirect effects of insect releases. Biol Control 35:307318
Ellis-Felege, SN, Dixon, CS, Wilson, SD (2013) Impacts and management of invasive cool-season grasses in the Northern Great Plains: challenges and opportunities for wildlife. Wildlife Soc B 37:510516
Ehrenfeld, JG (2000) Defining the limits of restoration: setting realistic goals. Restor Ecol 8:29
Espeland, EK, Perkins, L (2017) Weed establishment and persistence after water pipeline restoration and reclamation in the mixed grass prairie of western North Dakota. Ecol Restor 35:303–310
Espeland, EK, Petersen, M, Muscha, J, Scianna, J, Kilian, R (2014a) Revegetation after Russian olive (Eleaeagnus angustifolia L.) removal along the Yellowstone River: a cost and 2-year success assessment. Pages 13–22 in Proceedings of the 3rd Northern Rockies Invasive Plants Council Conference. Airway Heights, WA: USDA Forest Service
Espeland, EK, Rand, TA, Delaney, KJ (2014b) Russian olive fruit production in shelterbelt and riparian populations in Montana. Ecol Restor 32:354357
Gabler, CA, Siemann, E (2012) Environmental variability and ontogenetic niche shifts in exotic plants may govern reinvasion pressure in restorations of invaded ecosystems. Restor Ecol 20:545550
Galatowitsch, S, Richardson, DM (2005) Riparian scrub recovery after clearing of invasive alien trees in headwater streams of the Western Cape, South Africa. Biol Conserv 122:509521
Gornish, ES, Lennox, MS, Lewis, D, Tate, KW, Jackson, RD (2017) Comparing herbaceous plant communities in active and passive riparian restoration. PLoS ONE 12:e0176338
Graumlich, LJ, Pisaric, MFJ, Waggoner, LA, Littell, JS, King, JC (2002). Upper Yellowstone River Flow Reconstruction, International Tree-Ring Data Bank. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2002-074. https://gcmd.nasa.gov/records/GCMD_NOAA_NCDC_PALEO_2002-074.html. Accessed: July 17, 2017
Hobbs, RJ, Cramer, VA (2008) Restoration ecology: interventionist approaches in restoration and maintaining ecosystem function in the fact of rapid environmental change. Annu Rev Env Resour 33:3961
Horton, JL, Clark, JL (2001) Water table decline alters growth and survival of Salix gooddingii and Tamarix chinensis seedlings. Forest Ecol Manag 140:239247
Huston, MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449460
Hybner, R, Espeland, EK (2014). Russian Olive Elaeagnus angustifolia L. Effect of Seed Burial Depth on Seedling Emergence and Seed Viability. USDA Natural Resources Conservation Service Plant Materials Technical Note No. MT-107. 6 p
Jonasson, S (1988) Evaluation of the point intercept method for the estimation of plant biomass. Oikos 52:101106
Katz, GL, Shafroth, PB (2003) Biology, ecology and management of Elaeagnus angustifolia L. (Russian olive) in western North America. Wetlands 23:763777
Kimball, S, Kulow, M, Sorenson, Q, Balazs, K, Fang, Y, Davis, S, O’Connell, M, Huxman, T (2015) Cost-effective ecological restoration. Restor Ecol 23:800810
Lesica, P, Miles, S (1999) Russian olive invasion into cottonwood forests along a regulated river in north-central Montana. Can J Bot 77:10771083
Lesica, P, Miles, S (2001) Natural history and invasion of Russian olive along eastern Montana rivers. West N Am Nat 61:110
Levine, JM, Adler, PB, Yelenik, SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975989
Li Kui, L, Stella, JC (2016) Fluvial sediment burial increases mortality of young riparian trees but induces compensatory growth response in survivors. Forest Ecol Manag 366:3240
Mineau, MM, Baxter, CV, Marcarelli, AM (2011) A non-native riparian tree (Elaeagnus angustifolia) changes nutrient dynamics in streams. Ecosystems 14:353365
Morgan, JW (1999) Have tubestock plantings successfully established populations of rare grassland species into reintroduction sites in western Victoria? Biol Conserv 89:235243
Mulhouse, JM, Galatowitsch, SM (2003) Revegetation of prairie pothole wetlands in the mid-continental US: twelve years post-reflooding. Plant Ecol 169:143159
[NRCS] Natural Resources Conservation Service. (2006). Establishment of Bareroot and Container Stock in Riparian Areas. http://www.mt.nrcs.usda.gov/technical/ecs/forestry/technotes/forestryMT26. Accessed: May 10, 2011
[NRCS] Natural Resources Conservation Service. (2008). Riparian Forest Buffer Specifications 391. http://efotg.sc.egov.usda.gov/references/public/MT/391_spec_Nov_2008.pdf. Accessed: May 10, 2011
Nagler, PL, Glenn, EP, Jarnevich, CS, Shafroth, PB (2011) Distribution and abundance of saltcedar and Russian olive in the western United States. Crit Rev Plant Sci 30:508523
Naiman, RJ, Decamps, H, Pollock, M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecol Appl 3:209212
Palmer, MA, Ambrose, RF, Poff, NL (1997) Ecological theory and community restoration ecology. Restor Ecol 5:291300
Pearce, CM, Smith, DG (2001) Plains cottonwood’s last stand: can it survive invasion of Russian olive onto the Milk River, Montana floodplain? Environ Manag 28:623637
Perkins, LB, Hatfield, G, Espeland, EK (2016) Invasive grasses consistently create similar plant-soil feedback types in soils collected from geographically distant locations. J Plant Ecol 9:180186
Reever Morghan, KJ, Sheley, RL, Denny, MK, Pokorny, ML (2005) Seed islands may promote establishment and expansion of native species in reclaimed mine sites (Montana). Ecol Restor 23:214215
Richardson, DM, Holmes, PM, Esler, KJ, Galatowitsch, SM, Stromberg, JC, Kirkman, SP, Pysek, P, Hobbs, RJ (2007) Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Divers Distrib 13:126139
Rinella, MJ, Hammond, DH, Bryant, AEM, Kozar, BJ (2015) High precipitation and seeded species competition reduce seeded shrub establishment during dryland restoration. Ecol Appl 25:10441053
Rinella, MJ, Mangold, JM, Espeland, EK, Sheley, RL, Jacobs, JS (2012) Long-term effects of introducing desired plants into invaded grasslands. Ecol Appl 22:13201329
Rinella, M J, Maxwell, BD, Fay, PK, Weaver, T, Sheley, RL (2009) Control effort exacerbates invasive-species problem. Ecol Appl 19:155162
Robichaud, PR, Beyers, JL, Neary, DG (2000). Evaluating the effectiveness of postfire rehabilitation treatments. General Technical Report RMRS-GTR-63. Fort Collins, CO: Rocky Mountain Research Station. 85p
Ruwanza, S, Gaertner, M, Richardson, DM (2013) The effectiveness of active and passive restoration on recovery of indigenous vegetation in riparian zones in the Western Cape, South Africa: a preliminary assessment. S Afr J Bot 88:132141
Scianna, J, Kilian, R, Muscha, J (2012). Russian Olive Elaeagnus angustifolia L. Seed Longevity. USDA Natural Resources Conservation Service Plant Materials Technical Note No. MT-86. 3 p
Stannard, M, Ogle, D, Holzworth, L, Scianna, J, Sunleaf, E (2002) History, Biology, Ecology, Suppression and Revegetation of Russian-Olive Sites. Boise, ID: USDA Natural Resources Conservation Service Plant Materials. Technical Note No 47:14 p
Srivastava, DS, Vellend, M (2005) Biodiversity-ecosystem function research: is it relevant to conservation? Annu Rev Ecol Evol Syst 36:267294
Suding, KN (2011) Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annu Rev Ecol Evol Syst 42:465487
Sweeney, BW, Czapka, SJ (2004) Riparian forest restoration: why each site needs an ecological prescription. Forest Ecol Manag 192:361373
Tererai, F, Gaertner, M, Jacobs, S, Richardson, DM (2015) Resilience of invaded riparian landscapes: the potential role of soil-stored seed banks. Environ Manag 55:8699
Toledo, D, Sanderson, M, Spaeth, K, Hendrickson, J, Printz, J (2014) Extent of Kentucky bluegrass and its effect on native plant species diversity and ecosystem services in the Northern Great Plains of the United States. Invasive Plant Sci Manag 7:543552
Zavaleta, ES, Hobbs, RJ, Mooney, HA (2001) Viewing invasive species removal in a whole-ecosystem context. Trends Ecol Evol 16:454459
Zedler, JB, Callaway, JC (1999) Tracking wetland restoration: do mitigation sites follow desired trajectories? Restor Ecol 7:6973

Keywords

Type Description Title
WORD
Supplementary materials

Espeland et al supplementary material
Espeland et al supplementary material 1

 Word (70 KB)
70 KB

Secondary Invasion and Reinvasion after Russian-Olive Removal and Revegetation

  • Erin K. Espeland (a1), Jennifer M. Muscha (a2), Joseph Scianna (a3), Robert Kilian (a3), Natalie M. West (a1) and Mark K. Petersen (a2)...
  • Please note a correction has been issued for this article.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: