Skip to main content Accessibility help
×
Home

Indicators of Ventenata (Ventenata dubia) Invasion in Sagebrush Steppe Rangelands

  • Lisa C. Jones (a1), Nicholas Norton (a2) and Timothy S. Prather (a3)

Abstract

Ventenata [Ventenata dubia (Leers) Coss.], an invasive winter annual grass, significantly reduces forage production in grassland systems and displaces species within both perennial- and annual-dominated grasslands within the Inland Northwest. The range of V. dubia is expanding into sagebrush steppe communities, an expansive habitat critical for forage production, wildlife, and recreation. Currently, there is limited knowledge of V. dubia’s distribution and abundance within sagebrush steppe communities. We performed field surveys at 15 locations in sagebrush steppe rangelands in southern Idaho and eastern Oregon to assess where V. dubia occurs, with the aim of providing insight about its niche in this new habitat. Specifically, we evaluated biotic and abiotic factors of the plant community as indicators of V. dubia presence. We also correlated species diversity measures with no, low (<12.5%), and high (>12.5%) V. dubia cover. Though widely distributed throughout the study region, V. dubia only appeared in 45% of the 225 plots, and foliar cover was typically less than 50%. It was primarily found in ephemerally wet microhabitats. Species richness and the Shannon diversity index were lowest in plots with high V. dubia cover. Nonmetric multidimensional scaling analysis revealed that V. dubia and medusahead [Taeniatherum caput-medusae (L.) Nevski] were closely associated. Furthermore, chi-square indicator analysis showed that T. caput-medusae was more prevalent, while mountain big sagebrush [Artemisia tridentata Nutt. spp. vaseyana (Rydb.) Beetle] was less prevalent, in plots containing V. dubia. Abiotic factors that explained variation in V. dubia abundance included rock cover, soil depth, and a north/south aspect. Higher V. dubia cover also correlated with higher clay content and lower phosphorus and potassium concentrations in the soil. We suggest that at this point, detection survey efforts to locate incipient infestations of V. dubia in sagebrush steppe communities should focus on moist areas and sites susceptible to invasion by T. caput-medusae.

Copyright

Corresponding author

Author for correspondence: Lisa C. Jones, Department of Plant Sciences, University of Idaho, 875 Perimeter Drive, MS 2333, Moscow, ID 83844. (Email: lisajones@uidaho.edu)

References

Hide All
Allen, PS, Meyer, SE (2014) Community structure affects annual grass weed invasion during restoration of a shrub-steppe ecosystem. Invasive Plant Sci Manag 7:113
Báez, S, Collins, SL (2008) Shrub invasion decreases diversity and alters community stability in northern Chihuahuan Desert plant communities. PLoS ONE 3:e2332
Barkworth, ME, Capels, KM, Long, S (1993) Ventenata. Pages 683–684 in Flora of North America Editorial Committee, eds. Flora of North America North of Mexico. Volume 24, Magnoliophyta: Commelinidae (in part): Poaceae, part 1. New York: Oxford University Press
Bertness, M (1984) Habitat and community modification by an introduced herbivorous snail. Ecology 65:370381
CABI (2017) Ventenata dubia [original text by Timothy Prather]. In Invasive Species Compendium. Wallingford, UK: CAB International. https://www.cabi.org/isc/datasheet/117772. Accessed: October 31, 2017
Chytrý, M, Jarošík, V, Pyšek, P, Hájek, O, Knollová, I, Tichý, L, Danihelka, J (2008a) Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89:15411553
Chytrý, M, Maskell, LC, Pino, J, Pyšek, P, Vilà, M, Font, X, Smart, SM (2008b) Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol 45:448458
Consortium of Pacific Northwest Herbaria (2018) Specimen Database, University of Washington. http://www.pnwherbaria.org/data/search.php. Accessed: January 23, 2018
Contu, S (2013) Ventenata dubia. The IUCN Red List of Threatened Species 2013: e.T44392189A44414263. http://dx.doi.org/10.2305/IUCN.UK.2013-2.RLTS.T44392189A44414263.en. Accessed: October 31, 2017
D’Antonio, CM, Thomsen, M (2004) Ecological resistance in theory and practice. Weed Technol 18:15721577
Davies, KW, Sheley, RL (2007) A conceptual framework for preventing the spatial dispersal of invasive plants. Weed Sci 55:178184
Dickson, JH (1998) Plant introductions in Scotland. Pages 3844 in Lambert RA, ed. Species History in Scotland. Introductions and Extinctions Since the Ice Age. Edinburgh: Scottish Cultural Press
Ehleringer, JR, Schwinning, S, Gebauer, R (1999) Water use in arid land ecosystems. Pages 347365 in Press MC, Scholes JD, Barker MG, eds. Physiological Plant Ecology. Boston: Blackwell Science
Eriksson, O (1996) Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations. Oikos 77:248258
Godefroid, S, Koedam, N (2003) Identifying indicator plant species of habitat quality and invasibility as a guide for peri-urban forest management. Biodivers Conserv 12:16991713
González, AL, Kominoski, JS, Danger, M, Ishida, S, Iwai, N, Rubach, A (2010) Can ecological stoichiometry help explain patterns of biological invasions? Oikos 119:779790
Gooden, B, French, K, Turner, PJ, Downey, PO (2009) Impact threshold for an alien plant invader, Lantana camara L., on native plant communities. Biol Conserv 142:26312641
Grice, AC (2004) Weeds and the monitoring of biodiversity in Australian rangelands. Austral Ecol 29:5158
Hall, JPJ, Wood, JA, Harrison, E, Brockhurst, MA (2016) Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. Proc Natl Acad Sci USA 113:82608265
Hester, SM, Cacho, OJ (2009) The spread of a biological invasion in space and time: modelling active and passive surveillance. Pages 42984304 in Proceedings of the 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation. Cairns, Australia: Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation
Hironaka, M (1994) Medusahead: natural successor to the cheatgrass type in the northern Great Basin. Pages 8991 in Proceedings—Ecology and management of annual rangelands. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station
Horvath, TG, Lamberti, GA, Lodge, DM, Perry, WL (1996) Zebra mussel dispersal in lake-stream systems: source-sink dynamics? J N Am Benthol Soc 15:564575
Jepson Flora Project (2017) Jepson eFlora. http://ucjeps.berkeley.edu/eflora. Accessed: December 22, 2017
Kaltenecker, JH, Wicklow-Howard, M, Rosentreter, R (1997) Microbiotic crusts of the Lemhi Resource Area and their effect on soil-water relationships in sites recovering from long-term grazing. Salmon, ID: U.S. Department of the Interior Bureau of Land Management. 58 p
Leffler, AJ, Leonard, ED, James, JJ, Monaco, TA (2014) Invasion is contingent on species assemblage and invasive species identity in experimental rehabilitation plots. Rangeland Ecol Manag 67:657666
Macdonald, IAW (1994) Global change and alien invasions: implications for biodiversity and protected area management. Pages 199209 in Solbrig OT, Van Emden HM, Van Oordt PGW, eds. Biodiversity and Global Change. Paris: CAB International/IUBS
MacDougall, AS, Boucher, J, Turkington, R, Bradfield, GE (2006) Patterns of plant invasion along an environmental stress gradient. J Veg Sci 17:4756
Mack, RN, Simberloff, D, Londsdale, WM, Evans, H, Clout, M, Bazzaz, FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689710
Mackey, A (2014) Developing a Decision Support Tool for Ventenata (Ventenata dubia) Integrated Pest Management in the Inland Northwest. Master’s thesis. Moscow, ID: University of Idaho. 81 p
Marshall, TJ, Holmes, JW (1988) Soil Physics. 2nd ed. New York, NY: Cambridge University Press. 374 p
Miller, HC, Clausnitzer, D, Borman, MM (1999) Medusahead. Pages 271281 in Sheley RL, Petroff JK, eds. Biology and Management of Noxious Rangeland Weeds. Corvallis, OR: Oregon State University Press
Miller, TW, Northam, FE, Callihan, RH (1998) Forage cultivar performance on rangeland twelve years after seeding. Kona, HI: Western Society of Weed Science. P 4
Morris, EK, Caruso, T, Buscot, F, Fischer, M, Hancock, C, Maier, TS, Meiners, T, Müller, C, Obermaier, E, Prati, D, Socher, SA, Sonnemann, I, Wäschke, N, Wubet, T, Wurst, S, Rillig, MC (2014) Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol Evol 4:35143524
Northam, FE, Callihan, RH (1994) New weedy grasses associated with downy brome. Pages 211212 in Proceedings—Ecology and Management of Annual Rangelands. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station
Novak, SJ, Cristofaro, M, Maguire, D, Sforza, RFH (2015) The invasive grass ventenata (Ventenata dubia): a new threat for Nevada. http://agri.nv.gov/uploadedFiles/agrinvgov/Content/Plant/Noxious_Weeds/Documents/Novak%20et%20al.%20Nevada%20Weed%20Management%20Association%20Conference%202015.pdf. Accessed: December 27, 2017
Pavek, P, Wallace, J, Prather, T (2011) Ventenata biology and distribution in the Pacific Northwest. Page 107 in Proceedings of Western Society of Weed Science. Spokane, WA: Western Society of Weed Science
Pfeifer-Meister, L, Cole, EM, Roy, BA, Bridgham, SD (2008) Abiotic constraints on the competitive ability of exotic and native grasses in a Pacific Northwest prairie. Oecologia 155:357366
Porter, SD, Savignano, DA (1990) Invasion of polygyne fire ants decimates native ants and disrupts arthropod community. Ecology 7:20952106
Preston, DL, Henderson, JS, Johnson, PTJ (2012) Community ecology of invasions: direct and indirect effects of multiple invasive species on aquatic communities. Ecology 93:12541261
Prather, T, Burke, I (2011) Symposium: Ventenata dubia—an emerging threat to agriculture and wildlands? Pages 107111 in Proceedings of Western Society of Weed Science. Spokane, WA: Western Society of Weed Science
Pyšek, P, Bacher, S, Chytrý, M, Jarošík, V, Wild, J, Celesti-Grapow, L, Gassó, N, Kenis, M, Lambdon, PW, Nentwig, W, Pergl, J, Roques, A, Sádlo, J, Solarz, W, Vilà, M, Hulme, PE (2010) Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Glob Ecol Biogeogr 19:317331
Radosevich, SR, Stubbs, MM, Ghersa, CM (2003) Plant invasions: process and patterns. Weed Sci 51:254259
Rejmanek, M, Pitcairn, MJ (2002) When is eradiation of exotic pest plants a realistic goal? Pages 249253 in Veitch CR, Clout MN, eds. Turning the Tide: The Eradication of Invasive Species. Gland, Switzerland/Cambridge, UK: International Union for Conservation of Nature, IUCN Species Survival Commission
Sardans, J, Bartrons, M, Margalef, O, Gargallo-Garriga, A, Janssens, IA, Ciasis, P, Obersteiner, M, Sigurdsson, BD, Chen, HYH, Peñuelas, J (2017) Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Glob Change Biol 23:12821291
Shultz, L (2012) Pocket Guide to Sagebrush. Petaluma, CA: Point Reyes Bird Observatory Conservation Science. 88 p
Simberloff, D (2013) Invasive Species: What Everyone Needs to Know. 1st ed. New York: Oxford University Press. 352 p
Smith, AD (1950) Sagebrush as winter feed for deer. J Wildl Manag 14:285289
Stohlgren, TJ, Barnett, TD, Simonson, SS (2003) Beyond North American weed management standards. http://irmaservices.nps.gov/datastore/v4/rest/DownloadFile/434136?accessType=DOWNLOAD. Accessed: December 19, 2017
Theoharides, KA, Dukes, JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256273
Thuiller, W, Gassó, N, Pino, J, Vilà, M (2012) Ecological niche and species traits: key drivers of regional plant invader assemblages. Biol Invasions 14:19631980
[USDI] U.S. Department of the Interior (2001) Biological Soil Crusts: Ecology and Management. Denver, CO: U.S. Department of the Interior Technical Reference 1730-2. 110 p
Usher, MB (1989) Ecological effects of controlling invasive terrestrial vertebrates. Pages 463489 in Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmanek M, eds. Biological Invasions: A Global Perspective. New York: Wiley
Vilà, M, Pino, J, Font, X (2007) Regional assessment of plant invasions across different habitat types. J Veg Sci 18:3542
Vitousek, PM (1990) Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57:713
Wallace, JM, Prather, TS (2013a) Comparative demography of an exotic herbaceous annual among plant communities in invaded canyon grassland: inferences for habitat suitability and population spread. Biol Invasions 15:27832797
Wallace, JM, Prather, TS (2013b) Yellow starthistle control and forage response using aminopyralid and clopyralid combinations. San Diego, CA: Western Society of Weed Science. P 26
Warren, RJ, Bahn, V, Bradford, MA (2012) Decoupling litter barrier and soil moisture influences on the establishment of an invasive grass. Plant Soil 367:339346
With, KA (2002) The landscape ecology of invasive spread. Conserv Biol 16:11921203

Keywords

Indicators of Ventenata (Ventenata dubia) Invasion in Sagebrush Steppe Rangelands

  • Lisa C. Jones (a1), Nicholas Norton (a2) and Timothy S. Prather (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed