Skip to main content Accessibility help

Smell identification function in early-onset Alzheimer’s disease and mild cognitive impairment

  • Latha Velayudhan (a1) (a2), Frances Wilson-Morkeh (a2), Emily Penney (a2), Amala Jovia Maria Jesu (a3), Sarah Baillon (a2) (a3) and Traolach Brugha (a2)...


Little is known about olfactory identification (OI) function in early-onset Alzheimer’s disease (EOAD) and early-onset mild cognitive impairment (eoMCI) with age of onset <65 years. We aimed to study OI in EOAD compared with eoMCI and age-matched healthy controls (HC). Nineteen EOAD subjects with mild to moderate dementia, 17 with eoMCI, and 21 HC recruited as a convenience sample from memory services were assessed for cognition, behavioral symptoms, and activities for daily living. The OI was tested using the University of Pennsylvania smell identification test (UPSIT). EOAD participants performed worse compared with eoMCI and HC on cognitive tests and OI (p < 0.001). Although eoMCI had poorer cognitive scores compared to HC, they were similar in their OI function. OI correlated with attention (r = 0.494, p = 0.031), executive functions (r = 0.508, p = 0.026), and praxis (r = 0.455, p = 0.05) within the EOAD group. OI impairment was significantly associated with the diagnosis of EOAD versus eoMCI, but not with eoMCI when compared with HC. OI could potentially be useful in differentiating EOAD from eoMCI. Studies with late-life MCI patients showing OI impairment relative to HC may be attributed to a different disease process. Independent replication in a larger sample is needed to validate these findings.


Corresponding author

Correspondence should be addressed to: Latha Velayudhan, Consultant Psychiatrist and Senior Clinical Lecturer, Department of Old Age Psychiatry, PO Box 70, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London SE5 8AF, UK. Phone: 0044 207848 0508. Email:;


Hide All

Consultant Psychiatrist, South Staffordshire and Shropshire Healthcare NHS Foundation Trust, Lichfield, UK



Hide All
Attems, J., Konig, C., Huber, M., Lintner, F. and Jellinger, K. A. (2005). Cause of death in demented and non-demented elderly inpatients; an autopsy study of 308 cases. Journal of Alzheimer’s Disease, 8, 5762. doi: 10.3233/JAD-2005-8107.
Bucks, R. S., Ashworth, D. L., Wilcock, G. K. and Siegfried, K. (1996). Assessment of activities of daily living in dementia: development of the Bristol Activities of Daily Living Scale. Age and Ageing, 25, 113120. doi: 10.1093/ageing/25.2.113.
Christen-Zaech, S. et al. (2003). Early olfactory involvement in Alzheimer’s disease. Canadian Journal of Neurological Sciences, 30, 2025. doi: 10.1017/S0317167100002389.
Cummings, J. L., Mega, M., Gray, K., Rosenberg-Thompson, S., Carusi, D. A. and Gornbein, J. (1994). The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology, 44, 23082308. doi: 10.1212/WNL.44.12.2308.
Devanand, D. P. et al. (2015). Olfactory deficits predict cognitive decline and Alzheimer dementia in an urban community. Neurology, 84, 182189. doi: 10.1212/WNL.0000000000001132.
Djordjevic, J., Jones-Gotman, M., De Sousa, K. and Chertkow, H. (2008). Olfaction in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 29, 693706. doi: 10.1016/j.neurobiolaging.2006.11.014.
Doty, R. L., Reyes, P. F. and Gregor, T. (1987). Presence of both odor identification and detection deficits in Alzheimer’s disease. Brain Research Bulletin, 18, 597600. doi: 10.1016/0361-9230(87)90129-8.
Doty, R. L., Shaman, P. and Dann, M. (1984). Development of the University of Pennsylvania smell identification test: a standardized microencapsulated test of olfactory function. Physiology & Behavior, 32, 489502. doi: 10.1016/0031-9384(84)90269-5.
Ekstrom, I. et al. (2017). Smell loss predicts mortality risk regardless of dementia conversion. Journal of the American Geriatrics Society, 65, 12381243. doi: 10.1111/jgs.14770.
Folstein, M. F., Folstein, S. E. and McHugh, P. R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198. doi: 10.1016/0022-3956(75)90026-6.
Lafaille-Magnan, M. E. et al. (2017). Odor identification as a biomarker of preclinical AD in older adults at risk. Neurology, 89, 327335. doi: 10.1212/WNL.0000000000004159.
Lehrner, J., Pusswald, G., Gleiss, A., Auff, E. and Dal-Bianco, P. (2009). Odor identification and self-reported olfactory functioning in patients with subtypes of mild cognitive impairment. Clinical Neuropsychologist, 23, 818830. doi: 10.1080/13854040802585030.
Makizako, M. et al. (2014). Olfactory identification and cognitive performance in community-dwelling older adults with mild cognitive impairment. Chemical Senses, 39, 3946. doi: 10.1093/chemse/bjt052.
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D. and Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34, 939939. doi: 10.1212/WNL.34.7.939.
McKhann, G. M. et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 263269. doi: 10.1016/j.jalz.2011.03.005.
Mesholam, R. I., Moberg, P. J., Mahr, R. N. and Doty, R. L. (1998). Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases. Archives of Neurology, 55, 8490. doi: 10.1001/archneur.55.1.84.
Rahayel, S., Frasnelli, J. and Joubert, S. (2012). The effect of Alzheimer’s disease and Parkinson’s disease on olfaction: a meta-analysis. Behavioural Brain Research, 231, 6074. doi: 10.1016/j.bbr.2012.02.047.
Roalf, D. R. et al. (2017). A quantitative meta-analysis of olfactory dysfunction in mild cognitive impairment. Journal of Neurology, Neurosurgery, and Psychiatry, 88, 226232. doi: 10.1136/jnnp-2016-314638.
Rossor, M. N., Fox, N. C., Mummery, C. J., Schott, J. M. and Warren, J. D. (2010). The diagnosis of young-onset dementia. Lancet Neurology, 9, 793806. doi: 10.1016/S1474-4422(10)70159-9.
Roth, M. et al. (1986). CAMDEX. A standardised instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. British Journal of Psychiatry, 149, 698709. doi: 10.1192/bjp.149.6.698.
Schubert, C. R. et al. (2013). Odor identification and cognitive function in the Beaver Dam Offspring Study. Journal of Clinical and Experimental Neuropsychology, 35, 669676. doi: 10.1080/13803395.2013.809701.
Stanciu, I., Larsson, M., Nordin, S., Adolfsson, R., Nilsson, L. G. and Olofsson, J. K. (2014). Olfactory impairment and subjective olfactory complaints independently predict conversion to dementia: a longitudinal, population-based study. Journal of the International Neuropsychological Society, 20, 209217. doi: 10.1017/S1355617713001409.
Suzuki, Y. et al. (2004). Smell identification test as an indicator for cognitive impairment in Alzheimer’s disease. International Journal of Geriatric Psychiatry, 19, 727733. doi: 10.1002/gps.1161.
Velayudhan, L., Gasper, A., Pritchard, M., Baillon, S., Messer, C. and Proitsi, P. (2015). Pattern of smell identification impairment in Alzheimer’s disease. Journal of Alzheimer’s Disease, 46, 381387. doi: 10.3233/JAD-142838.
Velayudhan, L., Pritchard, M., Powell, J. F., Proitsi, P. and Lovestone, S. (2013). Smell identification function as a severity and progression marker in Alzheimer’s disease. International Psychogeriatrics, 25, 11571166. doi: 10.1017/S1041610213000446.
Wesson, D. W., Wilson, D. A. and Nixon, R. A. (2010). Should olfactory dysfunction be used as a biomarker of Alzheimer’s disease? Expert Review of Neurotherapeutics, 10, 633635. doi: 10.1586/ern.10.33.
Woodward, M. R. et al. (2017). Validation of olfactory deficit as a biomarker of Alzheimer disease. Neurology: Clinical Practice, 7, 514. doi: 10.1212/CPJ.0000000000000293.
World Health Organization (2015). Chapter V: mental and behavioural disorders. In International Statistical Classification of Diseases and Related Health Problems: 10th revision (ICD-10) – WHO version for 2016 (pp. F00F99). Geneva: World Health Organization.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed