Skip to main content Accessibility help
×
Home

Self-reported sleep disturbances are associated with poorer cognitive performance in older adults with hypertension: a multi-parameter risk factor investigation

  • Jordan N. Kohn (a1), Emily Troyer (a1), Robert N. Guay-Ross (a1), Kathleen Wilson (a2), Amanda Walker (a2), Chad Spoon (a2), Christopher Pruitt (a2), Gary Lyasch (a1), Meredith A. Pung (a2), Milos Milic (a3), Laura S. Redwine (a4) and Suzi Hong (a1) (a2)...

Abstract

Objectives:

Given the evidence of multi-parameter risk factors in shaping cognitive outcomes in aging, including sleep, inflammation, cardiometabolism, and mood disorders, multidimensional investigations of their impact on cognition are warranted. We sought to determine the extent to which self-reported sleep disturbances, metabolic syndrome (MetS) factors, cellular inflammation, depressive symptomatology, and diminished physical mobility were associated with cognitive impairment and poorer cognitive performance.

Design:

This is a cross-sectional study.

Setting:

Participants with elevated, well-controlled blood pressure were recruited from the local community for a Tai Chi and healthy-aging intervention study.

Participants:

One hundred forty-five older adults (72.7 ± 7.9 years old; 66% female), 54 (37%) with evidence of cognitive impairment (CI) based on Montreal Cognitive Assessment (MoCA) score ≤24, underwent medical, psychological, and mood assessments.

Measurements:

CI and cognitive domain performance were assessed using the MoCA. Univariate correlations were computed to determine relationships between risk factors and cognitive outcomes. Bootstrapped logistic regression was used to determine significant predictors of CI risk and linear regression to explore cognitive domains affected by risk factors.

Results:

The CI group were slower on the mobility task, satisfied more MetS criteria, and reported poorer sleep than normocognitive individuals (all p < 0.05). Multivariate logistic regression indicated that sleep disturbances, but no other risk factors, predicted increased risk of evidence of CI (OR = 2.00, 95% CI: 1.26–4.87, 99% CI: 1.08–7.48). Further examination of MoCA cognitive subdomains revealed that sleep disturbances predicted poorer executive function (β = –0.26, 95% CI: –0.51 to –0.06, 99% CI: –0.61 to –0.02), with lesser effects on visuospatial performance (β = –0.20, 95% CI: –0.35 to –0.02, 99% CI: –0.39 to 0.03), and memory (β = –0.29, 95% CI: –0.66 to –0.01, 99% CI: –0.76 to 0.08).

Conclusions:

Our results indicate that the deleterious impact of self-reported sleep disturbances on cognitive performance was prominent over other risk factors and illustrate the importance of clinician evaluation of sleep in patients with or at risk of diminished cognitive performance. Future, longitudinal studies implementing a comprehensive neuropsychological battery and objective sleep measurement are warranted to further explore these associations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Self-reported sleep disturbances are associated with poorer cognitive performance in older adults with hypertension: a multi-parameter risk factor investigation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Self-reported sleep disturbances are associated with poorer cognitive performance in older adults with hypertension: a multi-parameter risk factor investigation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Self-reported sleep disturbances are associated with poorer cognitive performance in older adults with hypertension: a multi-parameter risk factor investigation
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence should be addressed to: Suzi Hong, 9500 Gilman Drive, #0725, La Jolla, CA 92093, USA. Phone: + 1 858 822 4579. Email: s1hong@ucsd.edu; Jordan N. Kohn, University of California San Diego, Psychiatry, La Jolla, CA 92093, USA. Phone: +1 619 543 2861. Email: jokohn@ucsd.edu.

References

Hide All
Assuncao, N., Sudo, F.K., Drummond, C., de Felice, F.G. and Mattos, P. (2018). Metabolic syndrome and cognitive decline in the elderly: a systematic review. PLoS ONE, 13, 116. doi: 10.1371/journal.pone.0194990.
Barnes, D.E. and Yaffe, K. (2011). The projected effect of risk factor reduction on Alzheimer’s disease prevalence. The Lancet Neurology, 10, 819828. doi: 10.1016/S1474-4422(11)70072-2.
Benjamin, E.J. et al. (2018). Heart disease and stroke statistics - 2018 update: a report from the American Heart Association. Circulation, Lippincott Williams and Wilkins, 137, E67E492. doi: 10.1161/CIR.0000000000000558.
Bertrand, J.A., Marchand, D.G., Postuma, R.B. and Gagnon, J-F. (2013). Cognitive dysfunction in rapid eye movement sleep behavior disorder. Sleep and Biological Rhythms, 11, 2126. doi: 10.1111/j.1479-8425.2012.00547.x.
Bohannon, R.W. (2006). Reference values for the timed up and go test. Journal of Geriatric Physical Therapy, 29, 6468. doi: 10.1519/00139143-200608000-00004.
Byers, A. and Yaffe, K. (2011). Depression and risk of developing dementia. Nature Reviews Neurology, 7, 323331. doi: 10.1038/nrneurol.2011.60.Depression.
Cheng, H.T., Lin, F.J., Erickson, S.R., Hong, J.L. and Wu, C.H. (2017). The association between the use of zolpidem and the risk of Alzheimer’s disease among older people. Journal of the American Geriatrics Society, 65, 24882495. doi: 10.1111/jgs.15018.
Cooper, C., Sommerlad, A., Lyketsos, C.G. and Livingston, G. (2015). Modifiable predictors of dementia in mild cognitive impairment: a systematic review and meta-analysis. American Journal of Psychiatry, American Psychiatric Association, 172, 323334. doi: 10.1176/appi.ajp.2014.14070878.
Daulatzai, M.A. (2017). Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease. Journal of Neuroscience Research, 95, 943972. doi: 10.1002/jnr.23777.
Davis, D.H., Creavin, S.T., Yip, J.L., Noel-Storr, A.H., Brayne, C. and Cullum, S. (2015). Montreal cognitive assessment for the diagnosis of Alzheimer’s disease and other dementias. Cochrane Database of Systematic Reviews, 2015, CD010775. doi: 10.1002/14651858.CD010775.pub2.
Dimitrov, S. et al. (2013). Differential TNF production by monocyte subsets under physical stress: blunted mobilization of proinflammatory monocytes in prehypertensive individuals. Brain, Behavior, and Immunity, Elsevier Inc., 27, 101108. doi: 10.1016/j.bbi.2012.10.003.
Feng, J., Wang, Y., Feng, J., Cao, J. and Chen, B. (2013). Intermittent hypoxia from obstructive sleep apnea may cause neuronal impairment and dysfunction in central nervous system: the potential roles played by microglia. Neuropsychiatric Disease and Treatment, 9, 1077. doi: 10.2147/NDT.S49868.
Foley, D.J., Monjan, A.A., Brown, S.L., Simonsick, E.M., Wallace, R.B. and Blazer, D.G. (1995). Sleep complaints among elderly persons: an epidemiologic study of three communities. Sleep, 18, 425432. doi: 10.1093/sleep/18.6.425.
Fox, J. and Weisberg, S. (2012). Bootstrapping Regression Models in R. in An R Companion to Applied Regression, pp 1–17. Available at: http://socserv.mcmaster.ca/jfox/Books/Companion/appendix/Appendix-Bootstrapping.pdf.
Freitas, S., Simões, M.R., Marôco, J., Alves, L. and Santana, I. (2012). Construct validity of the Montreal Cognitive Assessment (MoCA). Journal of the International Neuropsychological Society, 18, 242250. doi: 10.1017/S1355617711001573.
Full, K.M., Malhotra, A., Crist, K., Moran, K. and Kerr, J. (2019). Assessing psychometric properties of the PROMIS Sleep Disturbance Scale in older adults in independent-living and continuing care retirement communities. Sleep Health, The Authors, 5, 1822. doi: 10.1016/j.sleh.2018.09.003.
Gaus, S.E., Strecker, R.E., Tate, B.A., Parker, R.A. and Saper, C.B. (2002). Ventrolateral preoptic nucleus contains sleep-active, galaninergic neurons in multiple mammalian species. Neuroscience, 115, 285294. doi: 10.1016/S0306-4522(02)00308-1.
Gubin, D.G. and Weinert, D. (2015). Temporal order deterioration and circadian disruption with age 1. Central and peripheral mechanisms. Advances in Gerontology, 5, 209218. doi: 10.1134/S2079057015040086.
Hanish, A.E., Lin-Dyken, D.C. and Han, J.C. (2017). PROMIS sleep disturbance and sleep-related impairment in adolescents. Nursing Research, 66, 246251. doi: 10.1097/NNR.0000000000000217.
Holanda Júnior, F.W.N. and de Almondes, K.M. (2016). Sleep and executive functions in older adults: a systematic review. Dementia & Neuropsychologia, 10, 185197. doi: 10.1590/S1980-5764-2016DN1003004.
Holth, J.K., Patel, T.K. and Holtzman, D.M. (2017). Sleep in Alzheimer’s Disease–Beyond Amyloid. Neurobiology of Sleep and Circadian Rhythms, Elsevier Inc., 2, 414. doi: 10.1016/j.nbscr.2016.08.002.
Hugo, J. and Ganguli, M. (2014). Dementia and cognitive impairment. Clinics in Geriatric Medicine, 30, 421442. doi: 10.1016/j.cger.2014.04.001.
Iadecola, C. and Gottesman, R.F. (2019). Neurovascular and cognitive dysfunction in hypertension. Circulation Research, 124, 10251044. doi: 10.1161/CIRCRESAHA.118.313260.
Ibrahim, A., Singh, D.K.A. and Shahar, S. (2017). “Timed Up and Go” test: age, gender and cognitive impairment stratified normative values of older adults. PLoS ONE, 12, 114. doi: 10.1371/journal.pone.0185641.
Irwin, M.R. (2019). Sleep and inflammation: partners in sickness and in health. Nature Reviews Immunology, doi: 10.1038/s41577-019-0190-z.
Jeste, D.V. et al. (2007). A new brief instrument for assessing decisional capacity for clinical research. Archives of General Psychiatry, 64, 966974. doi: 10.1001/archpsyc.64.8.966.
Ju, Y.-E.S. et al. (2017). Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain, 140, 21042111. doi: 10.1093/brain/awx148.
Kamel, N.S. and Gammack, J.K. (2006). Insomnia in the elderly: cause, approach, and treatment. American Journal of Medicine, 119, 463469. doi: 10.1016/j.amjmed.2005.10.051.
Kaur, S. et al. (2019). Sleep quality mediates the relationship between frailty and cognitive dysfunction in non-demented middle aged to older adults. International Psychogeriatrics, 31, 779788. doi: 10.1017/S1041610219000292.
Kohn, J.N. et al. (2019). Sex-specific roles of cellular inflammation and cardiometabolism in obesity-associated depressive symptomatology. International Journal of Obesity, 43, 20452056. doi: 10.1038/s41366-019-0375-3.
Koren, D. and Taveras, E.M. (2018). Association of sleep disturbances with obesity, insulin resistance and the metabolic syndrome Metabolism, 84, 6775. doi: 10.1016/j.metabol.2018.04.001.
Lévy, P. et al. (2015). Obstructive sleep apnoea syndrome. Nature Reviews Disease Primers, 1, 15015. doi: 10.1038/nrdp.2015.15.
Li, X. et al. (2017). Metabolic syndrome and stroke: a meta-analysis of prospective cohort studies. Journal of Clinical Neuroscience. Elsevier Ltd, 40, 3438. doi: 10.1016/j.jocn.2017.01.018.
Luojus, M.K., Lehto, S.M., Tolmunen, T., Brem, A.K., Lönnroos, E. and Kauhanen, J. (2017). Self-reported sleep disturbance and incidence of dementia in ageing men. Journal of Epidemiology and Community Health, 71, 329335. doi: 10.1136/jech-2016-207764.
Mayeda, E.R. (2019). Invited commentary: examining sex/gender differences in risk of Alzheimer disease and related dementias—challenges and future directions. American Journal of Epidemiology, 188, 12241227. doi: 10.1093/aje/kwz047.
Muela, H.C.S. et al. (2017). Hypertension severity is associated with impaired cognitive performance. Journal of the American Heart Association, 6, 110. doi: 10.1161/JAHA.116.004579.
Müller, L., Di Benedetto, S. and Pawelec, G. (2019). The immune system and its dysregulation with aging. Subcellular Biochemistry, 91, 2143. doi: 10.1007/978-981-13-3681-2_2.
Naidoo, N., Ferber, M., Master, M., Zhu, Y. and Pack, A.I. (2008). Aging impairs the unfolded protein response to sleep deprivation and leads to proapoptotic signaling. Journal of Neuroscience, 28, 65396548. doi: 10.1523/JNEUROSCI.5685-07.2008.
Newcombe, E.A., Camats-Perna, J., Silva, M.L., Valmas, N., Huat, TJ. and Medeiros, R. (2018). Inflammation: the link between comorbidities, genetics, and Alzheimer’s disease. Journal of Neuroinflammation, 15, 126. doi: 10.1186/s12974-018-1313-3.
Norris, M.P., Arnau, R.C., Bramson, R. and Meagher, M.W. (2004). The efficacy of somatic symptoms in assessing depression in older primary care patients. Clinical Gerontologist, 27, 4357. doi: 10.1300/J018v27n01_05.
Ong, K.L., Tso, A.W., Lam, K.S., Cherny, S.S., Sham, P.C. and Cheung, B.M. (2010). Using glycosylated hemoglobin to define the metabolic syndrome in United States adults. Diabetes Care, 33, 18561858. doi: 10.2337/dc10-0190.
Petersen, R.C. (2016). Mild cognitive impairment. CONTINUUM: Lifelong Learning in Neurology, 22, 404418. doi: 10.1212/CON.0000000000000313.
Prince, M., Ali, G.C., Guerchet, M., Prina, A.M., Albanese, E. and Wu, Y.T. (2016). Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimer’s Research and Therapy, 8, 23. doi: 10.1186/s13195-016-0188-8.
Rouch, L. et al. (2015). Antihypertensive drugs, prevention of cognitive decline and dementia: A systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs, 29, 113130. doi: 10.1007/s40263-015-0230-6.
Sambati, L., Calandra-Buonaura, G., Poda, R., Guaraldi, P. and Cortelli, P. (2014). Orthostatic hypotension and cognitive impairment: a dangerous association? Neurological Sciences, 35, 951957. doi: 10.1007/s10072-014-1686-8.
Shi, L. et al. (2018). Sleep disturbances increase the risk of dementia: a systematic review and meta-analysis. Sleep Medicine Reviews, 40, 416. doi: 10.1016/j.smrv.2017.06.010.
Shin, D., Kongpakpaisarn, K. and Bohra, C. (2018). Trends in the prevalence of metabolic syndrome and its components in the United States 2007–2014. International Journal of Cardiology, Elsevier B.V., 259, 216219. doi: 10.1016/j.ijcard.2018.01.139.
Sindi, S. et al. (2018). Sleep disturbances and later cognitive status: a multi-centre study. Sleep Medicine, 52, 2633. doi: 10.1016/j.sleep.2017.11.1149.
Spira, A.P. et al. (2013). Self-reported sleep and β-amyloid deposition in community-dwelling older adults. JAMA Neurology, 70, 15371543. doi: 10.1001/jamaneurol.2013.4258.
SPRINT MIND Investigators for the SPRINT Research Group et al. (2019). Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial. JAMA, 321, 553561. doi: 10.1001/jama.2018.21442.
Stoeckel, L.E. et al. (2016). Complex mechanisms linking neurocognitive dysfunction to insulin resistance and other metabolic dysfunction. F1000Research, 5, 353. doi: 10.12688/f1000research.8300.2.
Swardfager, W., Lanctôt, K., Rothenburg, L., Wong, A., Cappell, J. and Herrmann, N. (2010). A meta-analysis of cytokines in Alzheimer’s disease. Biological Psychiatry, 68, 930941. doi: 10.1016/j.biopsych.2010.06.012.
Trotti, L.M. (2010). REM sleep behaviour disorder in older individuals. Drugs & Aging, 27, 457470. doi: 10.2165/11536260-000000000-00000.
Tyndall, A.V. et al. (2016). Cardiometabolic risk factors predict cerebrovascular health in older adults: results from the Brain in Motion study. Physiological Reports, 4, e12733. doi: 10.14814/phy2.12733.
Yaffe, K. et al. (2004). The metabolic syndrome, inflammation, and risk of cognitive decline. Journal of the American Medical Association, 292, 22372242. doi: 10.1001/jama.292.18.2237.
Yaffe, K., Falvey, C.M. and Hoang, T. (2014). Connections between sleep and cognition in older adults. The Lancet Neurology, 13, 10171028. doi: 10.1016/S1474-4422(14)70172-3.
Yang, Y. and Kozloski, M. (2011). Sex differences in age trajectories of physiological dysregulation: Inflammation, metabolic syndrome, and allostatic load. Journals of Gerontology—Series A Biological Sciences and Medical Sciences, 66A, 493500. doi: 10.1093/gerona/glr003.
Zimmerman, M.E. and Aloia, M.S. (2012). Sleep-disordered breathing and cognition in older adults. Current Neurology and Neuroscience Reports, 12, 537546. doi: 10.1007/s11910-012-0298-z.

Keywords

Self-reported sleep disturbances are associated with poorer cognitive performance in older adults with hypertension: a multi-parameter risk factor investigation

  • Jordan N. Kohn (a1), Emily Troyer (a1), Robert N. Guay-Ross (a1), Kathleen Wilson (a2), Amanda Walker (a2), Chad Spoon (a2), Christopher Pruitt (a2), Gary Lyasch (a1), Meredith A. Pung (a2), Milos Milic (a3), Laura S. Redwine (a4) and Suzi Hong (a1) (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed