Skip to main content Accessibility help
×
Home

Geriatric Anxiety Scale: item response theory analysis, differential item functioning, and creation of a ten-item short form (GAS-10)

  • Anne E. Mueller (a1), Daniel L. Segal (a2), Brandon Gavett (a2), Meghan A. Marty (a3), Brian Yochim (a2) (a4), Andrea June (a5) and Frederick L. Coolidge (a2)...

Abstract

Background:

The Geriatric Anxiety Scale (GAS; Segal et al. (Segal, D. L., June, A., Payne, M., Coolidge, F. L. and Yochim, B. (2010). Journal of Anxiety Disorders, 24, 709–714. doi:10.1016/j.janxdis.2010.05.002) is a self-report measure of anxiety that was designed to address unique issues associated with anxiety assessment in older adults. This study is the first to use item response theory (IRT) to examine the psychometric properties of a measure of anxiety in older adults.

Method:

A large sample of older adults (n = 581; mean age = 72.32 years, SD = 7.64 years, range = 60 to 96 years; 64% women; 88% European American) completed the GAS. IRT properties were examined. The presence of differential item functioning (DIF) or measurement bias by age and sex was assessed, and a ten-item short form of the GAS (called the GAS-10) was created.

Results:

All GAS items had discrimination parameters of 1.07 or greater. Items from the somatic subscale tended to have lower discrimination parameters than items on the cognitive or affective subscales. Two items were flagged for DIF, but the impact of the DIF was negligible. Women scored significantly higher than men on the GAS and its subscales. Participants in the young-old group (60 to 79 years old) scored significantly higher on the cognitive subscale than participants in the old-old group (80 years old and older).

Conclusions:

Results from the IRT analyses indicated that the GAS and GAS-10 have strong psychometric properties among older adults. We conclude by discussing implications and future research directions.

Copyright

Corresponding author

Correspondence should be addressed to: Daniel L. Segal, PhD, Department of Psychology, University of Colorado at Colorado Springs, Colorado Springs, CO 80918, USA. Phone: +719-255-4176; Fax: +719-255-4166. Email: dsegal@uccs.edu.

References

Hide All
Baker, F. (2001). The Basics of Item Response Theory. College Park, MD: ERIC Clearinghouse on Assessment and Evaluation, University of Maryland.
Brock, K., Clemson, L., Cant, R., Ke, L., Cumming, R. G., Kendig, H. and Mathews, M. (2011). Worry in older community-residing adults. International Journal of Aging and Human Development, 72, 289301. doi:10.2190/AG.72.4.a.
Bryant, C., Jackson, H. and Ames, D. (2008). The prevalence of anxiety in older adults: methodological issues and a review of the literature. Journal of Affective Disorders, 109, 233250. doi:10.1016/j.jad.2007.11.008.
Byrne, G. J. and Pachana, N. A. (2011). Development and validation of a short form of the Geriatric Anxiety Inventory – the GAI-SF. International Psychogeriatrics, 23, 125131. doi:10.1017/S1041610210001237.
Calleo, J. et al. (2009). Generalized anxiety disorder in older medical patients: diagnostic recognition, mental health management, and service utilization. Journal of Clinical Psychology in Medical Settings, 16, 178185. doi:10.1007/s10880-008-9144-5.
Cairney, J., Corna, L. M., Veldhuizen, B. A., Herrmann, N. and Streiner, D. L. (2008). Comorbid depression and anxiety in later life: patterns of association, subjective well-being, and impairment. American Journal of Geriatric Psychiatry, 16, 201–208.
Choi, S. W., Gibbons, L. E. and Crane, P. K. (2011). Lordif: an R package for detecting differential item functioning using iterative hybrid ordinal logistic regression/item response theory and Monte Carlo simulations. Journal of Statistical Software, 39, 130.
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd edn. Hillsdale, NJ: Lawrence Erlbaum.
Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155159.
Crane, P. K., Gibbons, L. E., Jolley, L. and van Belle, G. (2006). Differential item functioning analysis with ordinal logistic regression techniques: DIF detect and dif with par. Medical Care, 44, S115123.
de Ayala, R. J. (2009). The Theory and Practice of Item Response Theory. New York, NY: Guilford Press.
De Beurs, E., Beekman, A. T. F., van Dyck, D. J. H. D. and van Tilburg, W. (2000). Predictors of change in anxiety symptoms of older persons: results from the Longitudinal Aging Study, Amsterdam. Psychological Medicine, 30, 515527.
Edelen, M. O. and Reeve, B. B. (2007). Applying item response theory (IRT) modeling to questionnaire development, evaluation, and refinement. Quality of Life Research, 16, 518. doi:10.1007/s11136-007-9198-0.
Edelstein, B. A. et al. (2008). Older adult psychological assessment: current instrument status and related considerations. Clinical Gerontologist, 31, 135.
Embretson, S.E. and Reise, S. P. (2000). Item Response Theory for Psychologists. Mahwah, NJ: Lawrence Erlbaum.
Flint, A. J. et al. (2010). Effect of age on the frequency of anxiety disorders in major depression with psychotic features. American Journal of Geriatric Psychiatry, 18, 404412.
Gum, A. M., King-Kallimanis, B. and Kohn, R. (2009). Prevalence of mood, anxiety, and substance-abuse disorders for older Americans in the National Comorbidity Survey Replication. American Journal of Geriatric Psychiatry, 17, 769781. doi:10.1097/JGP.0b013e3181ad4f5a.
Kabacoff, R. I., Segal, D. L., Hersen, M. and Van Hasselt, V. B. (1997). Psychometric properties and diagnostic utility of the Beck Anxiety Inventory and the State-Trait Anxiety Inventory with older adult psychiatric outpatients. Journal of Anxiety Disorders, 11, 3347. doi:10.1016/S0887-6185(96)00033-3.
Katon, W., Lin, E. and Kroenke, K. (2007). The association of depression and anxiety with medical symptom burden in patients with chronic medical illness. General Hospital Psychiatry, 29, 147155. doi:10.1016/j.genhosppsych.2006.11.005.
Leach, L. S., Christensen, H. and Mackinnon, A. J. (2008a). Gender differences in the endorsement of symptoms for depression and anxiety: are gender-biased items responsible? Journal of Nervous and Mental Disease, 196, 128135. doi:10.1097/NMD.0b013e318162aa63.
Leach, L. S., Christensen, H., Mackinnon, A. J., Windsor, T. D. and Butterworth, P. (2008b). Gender differences in depression and anxiety across the adult lifespan: the role of psychosocial mediators. Social Psychiatry and Psychiatric Epidemiology, 43, 983998. doi:10.1007/s00127-008-0388-z.
Lowe, P. A. and Reynolds, C. R. (2005). Do relationships exist between age, gender, and education and self-reports of anxiety among older adults? Individual Differences Research, 3, 239259.
Murphy, L. B., Sacks, J. J., Brady, T. J., Hootman, J. M. and Chapman, D. P. (2012). Anxiety is more common than depression among US adults with arthritis. Anxiety Care & Research, 64, 968976. doi:10.1002/acr.21685.
Pedraza, O. and Mungas, D. (2008). Measurement in cross-cultural neuropsychology. Neuropsychology Review, 18, 184193.
Potvin, O. et al. (2011). Norms and associated factors of the STAI-Y state anxiety inventory in older adults: results from the PAQUID study. International Psychogeriatrics, 23, 869879. doi:10.1017/S1041610210002358.
R Core Team. (2012). R: A Language and Environment for Statistical Computing (computer software). Vienna, Austria: R Foundation for Statistical Computing. Available at: http://www.R-project.org; last accessed: 7 December 2012.
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, 34, 100114.
Schaub, R. T. and Linden, M. (2000). Anxiety and anxiety disorders in the old and very old: results from the Berlin Aging Study (BASE). Comprehensive Psychiatry, 41, 4854. doi:10.1016/S0010-440X(00)80008-5.
Segal, D. L., June, A., Payne, M., Coolidge, F. L. and Yochim, B. (2010). Development and initial validation of a self-report assessment tool for anxiety among older adults: the Geriatric Anxiety Scale. Journal of Anxiety Disorders, 24, 709714. doi:10.1016/j.janxdis.2010.05.002.
Therrien, Z. and Hunsley, J. (2011). Assessment of anxiety in older adults: a systematic review of commonly used measures. Aging & Mental Health, 15, 116. doi:10.1080/13067863.2011.602960.
Van Dam, N. T., Earleywine, M. and Forsyth, J. P. (2009). Gender bias in the sixteen-item Anxiety Sensitivity Index: an application of polytomous differential item functioning. Journal of Anxiety Disorders, 23, 256259. doi:10.1016/j.janxdis.2008.07.008.
Wolitzky-Taylor, K. B., Castriotta, N., Lenze, E. J., Stanley, M. A. and Craske, M. G. (2010). Anxiety disorders in older adults: a comprehensive review. Depression and Anxiety, 27, 190211. doi:10.1002/da.20653.
Yochim, B. P., Mueller, A. E., June, A. and Segal, D. L. (2011). Psychometric properties of the Geriatric Anxiety Scale: comparison to the Beck Anxiety Inventory and Geriatric Anxiety Inventory. Clinical Gerontologist, 34, 2133. doi:10.1080/07317115.2011.524600.
Yochim, B. P., Mueller, A. E. and Segal, D. L. (2013). Late life anxiety is associated with decreased memory and executive functioning in community dwelling older adults. Journal of Anxiety Disorders, 27, 567575.
Zumbo, B. D. (1999). A Handbook on the Theory and Methods of Differential Item Functioning (DIF): Logistic Regression Modeling as a Unitary Framework for Binary and Likert-Type (Ordinal) Item Scores. Ottawa, Canada: Directorate of Human Resources Research and Evaluation, Department of National Defense.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed