Skip to main content Accessibility help
×
Home

The GAB2 and BDNF polymorphisms and the risk for late-onset Alzheimer's disease in an elderly Brazilian sample

  • Renalice Neves Vieira (a1), Joalce Dornelas Magalhães (a2), Jemima Sant’Anna (a2), Mateus Massao Moriguti (a3), Débora Marques de Miranda (a1) (a4), Luiz De Marco (a1) (a5), Edgar Nunes de Moraes (a1) (a2), Marco Aurélio Romano-Silva (a1) (a6), Maria Aparecida Camargos Bicalho (a1) (a2), Jonas Jardim de Paula (a1) and Marco Túlio Gualberto Cintra (a2)...

Abstract

Background:

Evidences suggest that GAB2 and BDNF genes may be associated with Alzheimer's disease (AD). We aimed to investigate the GAB2 rs2373115 and BDNF rs6265 polymorphisms and the risk of AD in a Brazilian sample.

Methods:

269 AD patients and 114 controls were genotyped with Real-time PCR. Multifactor dimensionality reduction (MDR) was employed to explore the effects of gene–gene interactions.

Results:

GAB2 and BDNF were not associated with AD in our sample. Nevertheless BDNF Val allele (rs6265) presented a synergic association with the APOE ε4 allele. A multiple logistic regression demonstrated that the APOE ε4 allele and years of education were the best predictors for AD. In ε4 non-carriers sex, education and hypertension were independently correlated with AD, while in ε4 carriers we did not observe any association. The findings were further confirmed by bootstrapping method.

Conclusions:

Our data suggest that the interaction of BDNF and APOE has significant effect on AD. Moreover in absence of ε4, female sex, low level of education and hypertension are independently associated with AD. Interventions aimed to prevent AD should focus on these factors and also taking into account the APOE alleles.

Copyright

Corresponding author

Correspondence should be addressed to: Renalice Neves Vieira, INCT de Medicina Molecular, Av. Professor Alfredo Balena, 190, Santa Efigênia, 30.130-100, Belo Horizonte, Minas Gerais, Brasil. Phone: +55 31 8854-5208. Email: renalicevieira@gmail.com.

References

Hide All
Adamczuk, K.et al. (2013). Clinical Polymorphism of brain derived neurotrophic factor influences β amyloid load in cognitively intact apolipoprotein E ε4 carriers. NeuroImage, 2, 512520. doi:10.1016/j.nicl.2013.04.001.
Bastos-Rodrigues, L., Pimenta, J. R. and Pena, S. D. J. (2006). The genetic structure of human populations studied through short insertion-deletion polymorphisms. Annals of Human Genetics, 70, 658665. doi: 10.1111/j.1469-1809.2006.00287.x.
Bicalho, M. A. C.et al. (2013). Sociodemographic characteristics, clinical factors, and genetic polymorphisms associated with Alzheimer's disease. International Journal of Geriatric Psychiatry, 28, 640646. doi:10.1002/gps.3875.
Brunelli, A. (2014). A synopsis of resampling techniques. Journal of Thoracic Disease, 6, 18791882. doi:10.3978/j.issn.2072-1439.2014.09.09.
Diniz, B. S. and Teixeira, A. L. (2011). Brain-derived neurotrophic factor and Alzheimer's disease: physiopathology and beyond. Neuromolecular Medicine, 13, 217222. doi: 10.1007/s12017-011-8154-x.
Duron, E. and Hanon, O. (2008). Vascular risk factors, cognitive decline, and dementia. Vascular Health and Risk Management, 4, 363381. doi: 10.2147/VHRM.S1839.
Eichner, J. E.et al. (2002). Apolipoprotein E Polymorphism and cardiovascular disease: a HuGE review. American Journal of Epidemiology, 155, 487495. doi: 10.1093/aje/155.6.487.
Garibotto, V.et al. (2012). Education and occupation provide reserve in both ApoE ε4 carrier and noncarrier patients with probable Alzheimer's disease. Neurological Sciences, 33, 10371042. doi:10.1007/s10072-011-0889-5.
Jin, C.et al. (2013). GAB2 polymorphism rs2373115 confers susceptibility to sporadic Alzheimer's disease. Neuroscience Letters, 556, 216220. doi:10.1016/j.neulet.2013.10.036.
Kauppi, K., Nilsson, L. G., Persson, J. and Nyberg, L. (2014). Additive genetic effect of APOE and BDNF on hippocampus activity. NeuroImage, 89, 306313. doi:10.1016/j.neuroimage.2013.11.049.
Kim, J., Basak, J. M. and Holtzman, D. M. (2009). Role of apolipoprotein E in Alzheimer's disease. Neuron, 63, 287303. doi:10.1016/j.neuron.2009.06.026.
Lahiri, D. K. and Nurnberger, J. I. Jr. (1991). A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Research, 19, 5444. doi: 10.1093/nar/19.19.5444.
Leduc, V., Jasmin-Bélanger, S. and Poirier, J. (2010). APOE and cholesterol homeostasis in Alzheimer's disease. Trends in Molecular Medicine, 16, 469477. doi: 10.1016/j.molmed.2010.07.008.
Liu, Y.H.et al. (2014). Associations between ApoE ε4 carrier status and serum BDNF levels-new insights into the molecular mechanism of ApoE ε4 actions in Alzheimer's disease. Molecular Neurobiology. Epublished ahead of print, doi:10.1007/s12035-014-8804-8.
Medway, C. and Morgan, K. (2014). Review: the genetics of Alzheimer's disease; putting flesh on the bones. Neuropathology and Applied Neurobiology, 40, 97105. doi:10.1111/nan.12101.
Mesulam, M. M. (1999). Neuroplasticity failure in Alzheimer's disease: bridging the gap between plaques and tangles. Neuron, 24, 521529. doi: 10.1016/S0896-6273(00)81109-5.
Mielke, M. M., Vemuri, P. and Rocca, W. A. (2014). Clinical epidemiology of Alzheimer's disease: assessing sex and gender differences. Clinical Epidemiology, 6, 3748. doi: 10.2147/CLEP.S37929.
Moore, J. H. (2004). Computational analysis of gene-gene interaction using multifactor dimensionality reduction. Expert Review of Molecular Diagnostics, 4, 795803. doi:10.1586/14737159.4.6.795.
Pritchard, J. K., Stephens, M. and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945959.
R Core Team (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org/. Accessed 14 may 2014.
Reiman, E. M.et al. (2007). GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers. Neuron 54, 713720. doi:10.1016/j.neuron.2007.05.022.
Reitz, C. and Mayeux, R. (2014). Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochemical Pharmacology, 88, 640651. doi:10.1016/j.bcp.2013.12.024.
Roe, C. M.et al. (2007). Education and Alzheimer disease without dementia: support for the cognitive reserve hypothesis. Neurology, 68, 223228. doi:10.1212/01.wnl.0000251303.50459.8a.
Sapkota, S., Vergote, D., Westaway, D., Jhamandas, J. and Dixon, R. A. (2015). Synergistic associations of catechol-O-methyltransferase and brain-derived neurotrophic factor with executive function in aging are selective and modified by apolipoprotein E. Neurobiology of Aging, 36, 249256. doi:10.1016/j.neurobiolaging.2014.06.020.
Scazufca, M.et al. (2008). Risk factor across the life course and dementia in a Brazilian population: results from the Sao Paulo Ageing & Health Study (SPAH). International Journal of Epidemiology, 37, 879890. doi: 10.1093/ije/dyn125.
Soldan, A.et al. (2013). Relationship of cognitive reserve and cerebrospinal fluid biomarkers to the emergence of clinical symptoms in preclinical Alzheimer's disease. Neurobiology of Aging, 34, 28272834. doi:10.1016/j.neurobiolaging.2013.06.017.
Steyerberg, E. W., Harrell, F. E., Borsboom, G. J. J. M., Eijkemans, M. J. C., Vergouwe, Y. and Habbema, J. D. F. (2001). Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. Journal of Clinical Epidemiology, 54, 774781. doi: 10.1016/S0895-4356(01)00341-9.
Tanzi, R. E. (2012). The genetics of Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2, a006296. doi: 10.1101/cshperspect.a006296.
Verghese, P. B., Castellano, J. M. and Holtzman, D. M. (2011). Roles of apolipoprotein E in Alzheimer's disease and other neurological disorders. Lancet Neurology, 10, 241252. doi: 10.1016/S1474-4422(10)70325-2.
Ward, D. D., Summers, M. J., Saunders, N. L., Janssen, P., Stuart, K. E. and Vickers, J. C. (2014). APOE and BDNF Val66Met polymorphisms combine to influence episodic memory function in older adults. Behavioural Brain Research, 271, 309315. doi:10.1016/j.bbr.2014.06.022.
Zou, F.et al. (2013). Linking protective GAB2 variants, increased cortical GAB2 expression and decreased Alzheimer's disease pathology. PloS one, 8, e64802. doi:10.1371/journal.pone.0064802.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed