Skip to main content Accessibility help
×
Home

Depressive and anxiety symptoms and cortical amyloid deposition among cognitively normal elderly persons: the Mayo Clinic Study of Aging

  • Janina Krell-Roesch (a1), Val J. Lowe (a2), Jennifer Neureiter (a3), Anna Pink (a1) (a3), Rosebud O. Roberts (a4) (a5), Michelle M. Mielke (a4) (a5), Prashanthi Vemuri (a2), Gorazd B. Stokin (a6), Teresa J. Christianson (a4), Clifford R. Jack (a2), David S. Knopman (a5), Bradley F. Boeve (a5), Walter K. Kremers (a4), Ronald C. Petersen (a4) (a5) and Yonas E. Geda (a1) (a5) (a7) (a8)...

Abstract

Background:

Little is known about the association of cortical Aβ with depression and anxiety among cognitively normal (CN) elderly persons.

Methods:

We conducted a cross-sectional study derived from the population-based Mayo Clinic Study of Aging in Olmsted County, Minnesota; involving CN persons aged ≥ 60 years that underwent PiB-PET scans and completed Beck Depression Inventory-II (BDI-II) and Beck Anxiety Inventory (BAI). Cognitive diagnosis was made by an expert consensus panel. Participants were classified as having abnormal (≥1.4; PiB+) or normal PiB-PET (<1.4; PiB−) using a global cortical to cerebellar ratio. Multi-variable logistic regression analyses were performed to calculate odds ratios (OR) and 95% confidence intervals (95% CI) after adjusting for age and sex.

Results:

Of 1,038 CN participants (53.1% males), 379 were PiB+. Each one point symptom increase in the BDI (OR = 1.03; 1.00–1.06) and BAI (OR = 1.04; 1.01–1.08) was associated with increased odds of PiB-PET+. The number of participants with BDI > 13 (clinical depression) was greater in the PiB-PET+ than PiB-PET- group but the difference was not significant (OR = 1.42; 0.83–2.43). Similarly, the number of participants with BAI > 10 (clinical anxiety) was greater in the PiB-PET+ than PiB-PET− group but the difference was not significant (OR = 1.77; 0.97–3.22).

Conclusions:

As expected, depression and anxiety levels were low in this community-dwelling sample, which likely reduced our statistical power. However, we observed an informative albeit weak association between increased BDI and BAI scores and elevated cortical amyloid deposition. This observation needs to be tested in a longitudinal cohort study.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Depressive and anxiety symptoms and cortical amyloid deposition among cognitively normal elderly persons: the Mayo Clinic Study of Aging
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Depressive and anxiety symptoms and cortical amyloid deposition among cognitively normal elderly persons: the Mayo Clinic Study of Aging
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Depressive and anxiety symptoms and cortical amyloid deposition among cognitively normal elderly persons: the Mayo Clinic Study of Aging
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence should be addressed to: Yonas E. Geda, MD, MSc, Professor of Neurology and Psychiatry, Consultant, Department of Psychiatry & Psychology and Department of Neurology, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259, Arizona. Phone: +480-301-4343; Fax: +480-301-7017. E-mail: geda.yonas@mayo.edu.

Footnotes

Hide All
*

Dr. Neureiter was a medical student when she did her research thesis work under the mentorship of Professor Geda. She is now doing residency training at Paracelsus Medical University, Salzburg, Austria.

Footnotes

References

Hide All
Altman, D. G. and Royston, P. (2006). The cost of dichotomising continuous variables. BMJ, 332, 1080.
Beck, A. T., Epstein, N., Brown, G. and Steer, R. A. (1988). An inventory for measuring clinical anxiety: psychometric properties. Journal of Consulting and Clinical Psychology, 56, 893897.
Beck, A. T., Steer, R. A. and Brown, G. K. (1996). BDI-II, Beck Depression Inventory: Manual. San Antonio, TX; Boston, MA: Psychological Corp.; Harcourt Brace.
Bjelland, I., Lie, S. A., Dahl, A. A., Mykletun, A., Stordal, E. and Kraemer, H. C. (2009). A dimensional versus a categorical approach to diagnosis: anxiety and depression in the HUNT 2 study. International Journal of Methods in Psychiatric Research, 18, 128137.
Braak, H. and Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82, 239259.
Brendel, M., Pogarell, O., Xiong, G., Delker, A., Bartenstein, P. and Rominger, A. (2015). Depressive symptoms accelerate cognitive decline in amyloid-positive MCI patients. European Journal of Nuclear Medicine and Molecular Imaging, 42, 716724.
Butters, M. A. et al. (2008). Imaging Alzheimer pathology in late-life depression with PET and Pittsburgh Compound-B. Alzheimer Disease and Associated Disorders, 22, 261268.
Chetelat, G. et al. (2012). Relationship between memory performance and beta-amyloid deposition at different stages of Alzheimer's disease. Neurodegenerative Diseases, 10, 141144.
Choi, S. H. et al. (2014). A three-dimensional human neural cell culture model of Alzheimer's disease. Nature, 515, 274278.
Chung, J. K. et al. (2016). Cortical amyloid beta deposition and current depressive symptoms in Alzheimer disease and mild cognitive impairment. Journal of Geriatric Psychiatry and Neurology, 29, 149159.
Cole, G. B. et al. (2010). Specific estrogen sulfotransferase (SULT1E1) substrates and molecular imaging probe candidates. Proceedings of the National Academy of Sciences of the United States of America, 107, 62226227.
Donovan, N. J. et al. (2015). Depressive symptoms and biomarkers of Alzheimer's disease in cognitively normal older adults. Journal of Alzheimer's Disease, 46, 6373.
Dubois, B. et al. (2007). Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurology, 6, 734746.
Geda, Y. E. et al. (2006). Depression, apolipoprotein E genotype, and the incidence of mild cognitive impairment: a prospective cohort study. Archives of Neurology, 63, 435440.
Geda, Y. E. et al. (2008). Prevalence of neuropsychiatric symptoms in mild cognitive impairment and normal cognitive aging: population-based study. Archives of General Psychiatry, 65, 11931198.
Geda, Y. E. et al. (2014). Baseline neuropsychiatric symptoms and the risk of incident mild cognitive impairment: a population-based study. American Journal of Psychiatry, 171, 572581.
Hardy, J. and Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 297, 353356.
Harrington, K. D. et al. (2017). Amyloid burden and incident depressive symptoms in cognitively normal older adults. International Journal of Geriatric Psychiatry, 32, 455463.
Harrington, K. D., Lim, Y. Y., Gould, E. and Maruff, P. (2015). Amyloid-beta and depression in healthy older adults: a systematic review. Australian and New Zealand Journal of Psychiatry, 49, 3646.
Holmes, S. E. et al. (2016). beta-Amyloid, APOE and BDNF genotype, and depressive and anxiety symptoms in cognitively normal older women and men. The American Journal of Geriatric Psychiatry, 24, 11911195.
Ismail, Z. et al. (2016). Neuropsychiatric symptoms as early manifestations of emergent dementia: provisional diagnostic criteria for mild behavioral impairment. Alzheimer's and Dementia, 12, 195202.
Ivnik, R. J. et al. (1992b). Mayo's older americans normative studies: updated AVLT norms for ages 56 to 97. Clinical Neuropsychologist, 6, 83104.
Ivnik, R. J. et al. (1992c). Mayo's older Americans normative studies: WAIS-R norms for ages 56 to 97. Clinical Neuropsychologist, 6, 130.
Ivnik, R. J. et al. (1992d). Mayo's older americans normative studies: WMS-R norms for ages 56 to 94. Clinical Neuropsychologist, 6, 4982.
Ivnik, R. et al. (1992a). Mayo's older americans normative studies: WAIS-R, WMS-R, and AVLT norms for ages 56 through 97. Clinical Neuropsychologist, 6, 1104.
Jack, C. R. et al. (2010). Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease. Brain, 133, 33363348.
Jack, C. R., Barrio, J. R. and Kepe, V. (2013). Cerebral amyloid PET imaging in Alzheimer's disease. Acta Neuropathologica, 126, 643657.
Jagust, W. J. et al. (2010). The Alzheimer's disease neuroimaging initiative positron emission tomography core. Alzheimer's & Dementia, 6, 221229.
Knopman, D. S. et al. (2012). Short-term clinical outcomes for stages of NIA-AA preclinical Alzheimer disease. Neurology, 78, 15761582.
Krell-Roesch, J. et al. (2016). FDG-PET and neuropsychiatric symptoms among cognitively normal elderly persons: the mayo clinic study of aging. Journal of Alzheimer's disease, 53, 16091616.
Laborde-Lahoz, P. et al. (2014). Subsyndromal depression among older adults in the USA: prevalence, comorbidity, and risk for new-onset psychiatric disorders in late life. International Journal of Geriatric Psychiatry, 30, 677685.
Malec, J. F. et al. (1992). Mayo's older americans normative studies: utility of corrections for age and education for the WAIS-R. Clinical Neuropsychologist, 6, 3147.
Morris, J. C. et al. (2009). Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Archives of Neurology, 66, 14691475.
Murray, M. E. et al. (2015). Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer's disease spectrum. Brain, 138, 13701381.
Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183194.
Petersen, R. C. et al. (2016). Association of elevated amyloid levels with cognition and biomarkers in cognitively normal people from the community. JAMA Neurology, 73, 8592.
Pietrzak, R. H. et al. (2014). Anxiety symptoms, cerebral amyloid burden and memory decline in healthy older adults without dementia: 3-year prospective cohort study. British Journal of Psychiatry, 204, 400401.
Pietrzak, R. H. et al. (2015). Amyloid-beta, anxiety, and cognitive decline in preclinical Alzheimer disease: a multicenter, prospective cohort study. JAMA Psychiatry, 72, 284291.
Pink, A. et al. (2015). Neuropsychiatric symptoms, APOE epsilon4, and the risk of incident dementia: a population-based study. Neurology, 84, 935943.
Pink, A. et al. (2017). Cortical thickness and anxiety symptoms among cognitively normal elderly persons: the mayo clinic study of aging. The Journal of Neuropsychiatry and Clinical Neurosciences, 29, 6066.
Roberts, R. O. et al. (2008). The Mayo clinic study of aging: design and sampling, participation, baseline measures and sample characteristics. Neuroepidemiology, 30, 5869.
Shaw, L. M., Korecka, M., Clark, C. M., Lee, V. M. and Trojanowski, J. Q. (2007). Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nature Reviews. Drug Discovery, 6, 295303.
Sperling, R. A. et al. (2011). Toward defining the preclinical stages of Alzheimer's disease: recommendations from the national institute on aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's and Dementia, 7, 280292.
Winblad, B. et al. (2004). Mild cognitive impairment–beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. Journal of Internal Medicine, 256, 240246.

Keywords

Depressive and anxiety symptoms and cortical amyloid deposition among cognitively normal elderly persons: the Mayo Clinic Study of Aging

  • Janina Krell-Roesch (a1), Val J. Lowe (a2), Jennifer Neureiter (a3), Anna Pink (a1) (a3), Rosebud O. Roberts (a4) (a5), Michelle M. Mielke (a4) (a5), Prashanthi Vemuri (a2), Gorazd B. Stokin (a6), Teresa J. Christianson (a4), Clifford R. Jack (a2), David S. Knopman (a5), Bradley F. Boeve (a5), Walter K. Kremers (a4), Ronald C. Petersen (a4) (a5) and Yonas E. Geda (a1) (a5) (a7) (a8)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed