Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-16T21:04:32.792Z Has data issue: false hasContentIssue false

An abbreviated version of Silhouettes test: a brief validated mild cognitive impairment screening tool

Published online by Cambridge University Press:  19 December 2018

Lin Huang
Affiliation:
Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
Ke-Liang Chen
Affiliation:
Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
Bi-Ying Lin
Affiliation:
Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
Le Tang
Affiliation:
Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
Qian-Hua Zhao
Affiliation:
Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
Fang Li*
Affiliation:
Department of Gerontology, Fuxing Hospital, Capital Medical University, Beijing, China
Qi-Hao Guo
Affiliation:
Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
*
Correspondence should be addressed to: Fang Li, Department of Gerontology, Fuxing Hospital, Capital Medical University, No.20 A, Fuxingmenwai Street, Beijing 100038, China. Phone: +86 18510859856; Fax: +861088062032. Email: lifangwa@sina.com

Abstract

Objectives:

To revise an abbreviated version of the Silhouettes subtest of the Visual Object and Space Perception (VOSP) battery in order to recognize mild cognitive impairment (MCI) and determine the optimal cutoffs to differentiate among cognitively normal controls (NC), MCI, and Alzheimer’s Disease (AD) in the Chinese elderly.

Design:

A cross-sectional validation study.

Setting:

Huashan Hospital, Shanghai, China.

Subjects:

A total of 591 participants: Individuals with MCI (n = 211), AD (n = 139) and NC (n = 241) were recruited from the Memory Clinic, Huashan Hospital, Shanghai, China.

Methods:

Baseline neuropsychological battery (including VOSP) scores were collected from firsthand data. An abbreviated version of silhouettes test (Silhouettes-A) was revised from the original English version more suitable for the elderly, including eight silhouettes of animals and seven silhouettes of inanimate objects, with a score ranging from 0 to 15.

Results:

Silhouettes-A was an effective test to screen MCI in the Chinese elderly with good sensitivity and specificity, similar to the Montreal cognitive assessment and superior to other single tests reflecting language, spatial, or executive function. However, it had no advantage in distinguishing MCI from AD. The corresponding optimal cutoff scores of Silhouettes-A were 10 for screening MCI and 8 for AD.

Conclusion:

Silhouettes-A is a quick, simple, sensitive, and dependable cognitive test to distinguish among NC, MCI, and AD patients.

Type
Original Research Article
Copyright
© International Psychogeriatric Association 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M. S. et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 270279. doi: 10.1016/j.jalz.2011.03.008.CrossRefGoogle Scholar
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders: DSM-5. 5th ed. Washington, DC: American Psychiatric Association.Google Scholar
Amieva, H. et al. (2008). Prodromal Alzheimer’s disease: successive emergence of the clinical symptoms. Annals of Neurology, 64, 492498. doi: 10.1002/ana.21509.CrossRefGoogle ScholarPubMed
Belleville, S., Fouquet, C., Hudon, C., Zomahoun, H. T. V. and Croteau, J. (2017). Neuropsychological measures that predict progression from mild cognitive impairment to Alzheimer’s type dementia in older adults: a systematic review and meta-analysis. Neuropsychology Review, 3, 126. doi: 10.1007/s11065-017-9361-5.Google Scholar
Benton, A. L. (1983). Contributions to Neuropsychological Assessment: A Clinical Manual. New York: Oxford University Press.Google Scholar
Binetti, G., Cappa, S. F., Magni, E., Padovani, A., Bianchetti, A. and Trabucchi, M. (1996). Disorders of visual and spatial perception in the early stage of Alzheimer’s disease. Annals of the New York Academy of Sciences, 777, 221225. doi: 10.1111/j.1749-6632.1996.tb34422.x.CrossRefGoogle ScholarPubMed
Boyd, C. D. et al. (2014). Visuoperception test predicts pathologic diagnosis of Alzheimer disease in corticobasal syndrome. Neurology, 83, 510519. doi: 10.1212/WNL.0000000000000667.CrossRefGoogle ScholarPubMed
Calderon, J., Perry, R. J., Erzinclioglu, S. W., Berrios, G. E., Dening, T. and Hodges, J. R. (2001). Perception, attention, and working memory are disproportionately impaired in dementia with Lewy bodies compared with Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 70, 157164. doi: 10.1136/jnnp.70.2.157.CrossRefGoogle ScholarPubMed
Calvo, L. et al. (2013). Spanish normative studies in young adults (NEURONORMA young adults project): norms for the Visual Object and Space Perception Battery and Judgment of Line Orientation tests. Neurologia, 28, 153159. doi: 10.1016/j.nrl.2012.03.007.CrossRefGoogle ScholarPubMed
Chen, Q., Weidner, R., Vossel, S., Weiss, P. H. and Fink, G. R. (2012). Neural mechanisms of attentional reorienting in three-dimensional space. Journal of Neuroscience, 32, 1335213362. doi: 10.1523/JNEUROSCI.1772-12.2012.CrossRefGoogle ScholarPubMed
Eckerstrom, C. et al. (2013). A combination of neuropsychological, neuroimaging, and cerebrospinal fluid markers predicts conversion from mild cognitive impairment to dementia. Journal of Alzheimer’s disease, 36, 421431.CrossRefGoogle Scholar
Fukui, T. and Lee, E. (2009). Visuospatial function is a significant contributor to functional status in patients with Alzheimer’s disease. American Journal of Alzheimer’s Disease & Other Dementias, 24, 313321. doi: 10.1177/1533317509333903.CrossRefGoogle ScholarPubMed
Hachinski, V., Oveisgharan, S., Romney, A. K. and Shankle, W. R. (2012). Optimizing the Hachinski ischemic scale. Archives of Neurology, 69, 169175. doi: 10.1001/archneurol.2011.1698.CrossRefGoogle ScholarPubMed
Haxby, J. V., Duara, R., Grady, C. L., Cutler, N. R. and Rapoport, S. I. (1985). Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer’s disease. Journal of Cerebral Blood Flow & Metabolism, 5, 193200. doi: 10.1038/jcbfm.1985.25.CrossRefGoogle ScholarPubMed
Herrera-Guzman, I., Peña-Casanova, J., Lara, J. P., Gudayol-Ferre, E. and Böhm, P. (2004). Influence of age, sex, and education on the Visual Object and Space Perception Battery (VOSP) in a healthy normal elderly population. The Clinical Neuropsychologist, 18, 385394.CrossRefGoogle Scholar
Jack, C. J. et al. (2011). Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 257262. doi: 10.1016/j.jalz.2011.03.004.CrossRefGoogle ScholarPubMed
Kaplan, E., Goodglass, H. and Weintraub, S. (1983). Boston Naming Test. Philadelphia: Lea & Febiger.Google Scholar
Kusne, Y., Wolf, A. B., Townley, K., Conway, M. and Peyman, G. (2017). Visual system manifestations of Alzheimer’s disease. Acta Ophthalmologica, 95, e668e676. doi: 10.1111/aos.13319.CrossRefGoogle ScholarPubMed
Lin, K. N., Wang, P. N., Liu, C. Y., Chen, W. T., Lee, Y. C. and Liu, H. C. (2002). Cutoff scores of the cognitive abilities screening instrument, Chinese version in screening of dementia. Dementia and Geriatric Cognitive Disorders, 14, 176182. doi: 10.1159/000066024.CrossRefGoogle Scholar
Mandal, P. K., Joshi, J. and Saharan, S. (2012). Visuospatial perception: an emerging biomarker for Alzheimer’s disease. Journal of Alzheimer’s Disease, 31, S117S135. doi: 10.3233/JAD-2012-120901.CrossRefGoogle ScholarPubMed
Mendez, M. F., Mendez, M. A., Martin, R., Smyth, K. A. and Whitehouse, P. J. (1993). Complex visual disturbances in Alzheimer’s disease. Neurology, 40, 439443. doi: 10.1212/WNL.40.3_Part_1.439.CrossRefGoogle Scholar
Morris, J. C. (1993). The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology, 43, 24122414. doi: 10.1212/WNL.43.11.2412-a.CrossRefGoogle ScholarPubMed
Patricia, J. and Bonello, L. J. R. (1997). Psychometric properties of the visual object and space perception battery in normal older adults. The Clinical Neuropsychologist, 11, 436442. doi: 10.1080/13854049708400475.Google Scholar
Petersen, R. C. (2000). Mild cognitive impairment: transition between aging and Alzheimer’s disease. Neurologia, 15, 93101. doi: 10.1002/0470846453.ch14.Google ScholarPubMed
Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G. and Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56, 303308. doi: 10.1001/archneur.56.3.303.CrossRefGoogle ScholarPubMed
Possin, K. L. (2010). Visual spatial cognition in neurodegenerative disease. Neurocase, 16, 466487. doi: 10.1080/13554791003730600.CrossRefGoogle ScholarPubMed
Quental, N. B., Brucki, S. M. and Bueno, O. F. (2013). Visuospatial function in early Alzheimer’s disease—the use of the Visual Object and Space Perception (VOSP) battery. PLoS One, 8, e68398. doi: 10.1371/journal.pone.0068398.CrossRefGoogle ScholarPubMed
Rapport, L. J., Millis, S. R. and Bonello, P. J. (1998). Validation of the Warrington theory of visual processing and the Visual Object and Space Perception Battery. Journal of Clinical and Experimental Neuropsychology, 20, 211220. doi: 10.1076/jcen.20.2.211.1169.CrossRefGoogle ScholarPubMed
Rey, A. (1964). The Clinical Exam in Psychology. Paris, France: Press Universitaire de France.Google Scholar
Rey, A. (1983). Reativo of Complex Figure A and B. Florence, Italy: Organizzazioni Speciali.Google Scholar
Rizzo, M., Anderson, S. W., Dawson, J., Myers, R. and Ball, K. (2000). Visual attention impairments in Alzheimer’s disease. Neurology, 54, 19541959. doi: 10.1212/WNL.54.10.1954.CrossRefGoogle ScholarPubMed
Salmon, D. P. and Bondi, M. W. (2009). Neuropsychological assessment of dementia. Annual Review of Psychology, 60, 257282. doi: 10.1146/annurev.psych.57.102904.190024.CrossRefGoogle ScholarPubMed
Thiyagesh, S. N. et al. (2009). The neural basis of visuospatial perception in Alzheimer’s disease and healthy elderly comparison subjects: an fMRI study. Psychiatry Research, 172, 109116. doi: 10.1016/j.pscychresns.2008.11.002.CrossRefGoogle ScholarPubMed
Warrington, E. K. and James, M. (1991). The Visual Object and Space Perception Battery. Bury St. Edmunds, UK: Thames Valley Test Company.Google Scholar
Wechsler, D. (1981). Adult Intelligence Scale- Revised. New York: Psychological Corporation.Google Scholar
Worboys, M. (2013). The Hamilton rating scale for depression: the making of a “gold standard” and the unmaking of a chronic illness, 1960-1980. Chronic Illness, 9, 202219. doi: 10.1177/1742395312467658.CrossRefGoogle ScholarPubMed
Zhang, M. Y. et al. (1990). The prevalence of dementia and Alzheimer’s disease in Shanghai, China: impact of age, gender, and education. Annals of Neurology, 27, 428437. doi: 10.1002/ana.410270412.CrossRefGoogle Scholar
Zhao, Q., Guo, Q., Li, F., Zhou, Y., Wang, B. and Hong, Z. (2013). The Shape Trail Test: application of a new variant of the Trail Making Test. PLoS One, 8, e57333. doi: 10.1371/journal.pone.0057333.CrossRefGoogle ScholarPubMed
Supplementary material: File

Huang et al. supplementary material

Tables S1-S4 and Figure S1

Download Huang et al. supplementary material(File)
File 112.2 KB