Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-01T19:46:00.133Z Has data issue: false hasContentIssue false

A morphometric examination of neuronal and glial cell pathology in the orbitofrontal cortex in late-life depression

Published online by Cambridge University Press:  18 June 2010

Ahmad Khundakar*
Affiliation:
Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, U.K.
Christopher Morris
Affiliation:
Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, U.K.
Arthur Oakley
Affiliation:
Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, U.K.
Alan J. Thomas
Affiliation:
Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, U.K.
*
Correspondence should be addressed to: Ahmad Khundakar, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, U.K. Phone: +44 (0)191 445 5212; Fax: +44 (0)191 445 6685. Email: ahmad.khundakar@ncl.ac.uk.

Abstract

Background: The orbitofrontal cortex has been implicated as a key component in depression by several imaging studies. This study aims to examine morphometrically glial cell and neuronal density and neuronal volume in the orbitofrontal cortex of late-life major depression patients.

Methods: Post mortem tissue from 13 patients with major depression and 11 matched controls was obtained and analyzed using the optical disector and nucleator methods.

Results: No changes were found in glial cell, pyramidal or non-pyramidal neuron density, or in non-pyramidal and pyramidal neuron volume in the orbitofrontal cortex.

Conclusions: Based on previous findings, this study suggests variability in morphological changes within the orbitofrontal cortex, as well as the prefrontal cortex as a whole.

Type
Research Article
Copyright
Copyright © International Psychogeriatric Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexopoulos, G. S., Meyers, B. S., Young, R. C., Kakuma, T., Silbersweig, D. and Charlson, M. (1997). Clinically defined vascular depression. American Journal of Psychiatry, 154, 562565.Google ScholarPubMed
American Psychiatric Association (1994). The Diagnostic and Statistical Manual of Mental Disorders, 4th edn.Washington, DC: American Psychiatric Association.Google Scholar
Baldwin, R. C. and O'Brien, J. (2002). Vascular basis of late-onset depressive disorder. British Journal of Psychiatry, 180, 157160.CrossRefGoogle ScholarPubMed
Carmichael, S. T. and Price, J. L. (1995). Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. Journal of Comparative Neurology, 363, 615641.CrossRefGoogle ScholarPubMed
Cotter, D., Hudson, L. and Landau, S. (2005). Evidence for orbitofrontal pathology in bipolar disorder and major depression, but not in schizophrenia. Bipolar Disorders, 7, 358369.CrossRefGoogle ScholarPubMed
Drevets, W. C., Videen, T. O., Price, J. L., Preskorn, S. H., Carmichael, S. T. and Raichle, M. E. (1992). A functional anatomical study of unipolar depression. Journal of Neuroscience, 12, 36283641.CrossRefGoogle ScholarPubMed
Egger, K. et al. (2008). Pattern of brain atrophy in elderly patients with depression revealed by voxel-based morphometry. Psychiatry Research, 164, 237244.CrossRefGoogle ScholarPubMed
Greenwald, B. S., Kramer-Ginsberg, E., Krishnan, K. R., Ashtari, M., Auerbach, C. and Patel, M. (1998). Neuroanatomic localization of magnetic resonance imaging signal hyperintensities in geriatric depression. Stroke, 29, 613617.CrossRefGoogle ScholarPubMed
Gundersen, H. J. (1988). The nucleator. Journal of Microscopy, 151, 321.CrossRefGoogle ScholarPubMed
Gundersen, H. J. and Jensen, E. B. (1987). The efficiency of systematic sampling in stereology and its prediction. Journal of Microscopy, 147, 229263.CrossRefGoogle ScholarPubMed
Herrmann, L. L., Le Masurier, M. and Ebmeier, K. P. (2008). White matter hyperintensities in late life depression: a systematic review. Journal of Neurology, Neurosurgery and Psychiatry, 79, 619624.CrossRefGoogle ScholarPubMed
Khundakar, A. A. and Thomas, A. J. (2009). Morphometric changes in early- and late-life major depressive disorder: evidence from postmortem studies. International Psychogeriatrics, 21, 844854.CrossRefGoogle ScholarPubMed
Khundakar, A. A., Morris, C. M., Oakley, A. E., McMeekin, W. and Thomas, A. J. (2009). Morphometric analysis of neuronal and glial cell pathology in the dorsolateral prefrontal cortex in late-life depression. British Journal of Psychiatry, 195, 163169.CrossRefGoogle ScholarPubMed
MacFall, J. R., Payne, M. E., Provenzale, J. E. and Krishnan, K. R. (2001). Medial orbital frontal lesions in late-onset depression. Biological Psychiatry, 49, 803806.CrossRefGoogle ScholarPubMed
Northoff, G. et al. (2000). Functional dissociation between medial and lateral prefrontal cortical spatiotemporal activation in negative and positive emotions: a combined fMRI/MEG study. Cerebral Cortex, 10, 93107.CrossRefGoogle ScholarPubMed
Ongur, D., Ferry, A. T. and Price, J. L. (2003). Architectonic subdivision of the human orbital and medial prefrontal cortex. Journal of Comparative Neurology, 460, 425449.CrossRefGoogle ScholarPubMed
Rajkowska, G. et al. (1999). Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biological Psychiatry, 45, 10851098.CrossRefGoogle ScholarPubMed
Rajkowska, G., Miguel-Hidalgo, J. J., Dubey, P., Stockmeier, C. A. and Krishnan, K. R. (2005). Prominent reduction in pyramidal neurons density in the orbitofrontal cortex of elderly depressed patients. Biological Psychiatry, 58, 297306.CrossRefGoogle ScholarPubMed
Robinson, R. G. and Szetela, B. (1981). Mood change following left hemispheric brain injury. Annals of Neurology, 9, 447453.CrossRefGoogle ScholarPubMed
Rogers, M. A., Bradshaw, J. L., Pantelis, C. and Phillips, J. G. (1998). Frontostriatal deficits in unipolar major depression. Brain Research Bulletin, 47, 297310.CrossRefGoogle ScholarPubMed
Rogers, M. A. et al. (2004). Executive and prefrontal dysfunction in unipolar depression: a review of neuropsychological and imaging evidence. Neuroscience Research, 50, 111.CrossRefGoogle ScholarPubMed
Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55, 1129.CrossRefGoogle ScholarPubMed
Taylor, W. D. et al. (2001). Evidence of white matter tract disruption in MRI hyperintensities. Biological Psychiatry, 50, 179183.CrossRefGoogle ScholarPubMed
Teodorczuk, A. et al. (2007). White matter changes and late-life depressive symptoms: longitudinal study. British Journal of Psychiatry, 191, 212217.CrossRefGoogle ScholarPubMed
Thomas, A. J., Ferrier, I. N., Kalaria, R. N., Davis, S. and O'Brien, J. T. (2002). Cell adhesion molecule expression in the dorsolateral prefrontal cortex and anterior cingulate cortex in major depression in the elderly. British Journal of Psychiatry, 181, 129134.CrossRefGoogle ScholarPubMed
van Otterloo, E., O'Dwyer, G., Stockmeier, C. A., Steffens, D. C., Krishnan, R. R. and Rajkowska, G. (2009). Reductions in neuronal density in elderly depressed are region specific. International Journal of Geriatric Psychiatry, 24, 856864.CrossRefGoogle ScholarPubMed