Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T06:56:19.477Z Has data issue: false hasContentIssue false

Interactions of host plant resistance and biological control of stemborers in sorghum

Published online by Cambridge University Press:  19 September 2011

K. F. Nwanze
Affiliation:
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Patancheru 502 324, Andhra Pradesh, India
F. E. Nwilene
Affiliation:
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Patancheru 502 324, Andhra Pradesh, India
Get access

Abstract

Lepidopteran stemborers are major limiting factors in the production of maize and sorghum in Africa and Asia. Host-plant resistance and biological control are important components of an IPM programme and can effectively maintain pest populations below economic threshold levels, especially in low-input subsistence farming systems. When damaged by herbivores, plants produce allelochemicals which can attract natural enemies of the pest. These volatiles occur systematically throughout the plant and are different from those emitted in response to mechanical damage. We report evidence of plant volatiles-mediated differential reaction of parasitoid activity to sorghum genotypes. These volatiles could have a positive impact on the efficacy of stemborer parasitoids, leading to increased host finding or increased searching efficiency, thereby enhancing the suppression of stemborer populations. In a single-season case study, parasitoid activity was higher in stemborer-resistant genotypes than in susceptible ones and varied with crop age. Knowledge of such interactions should be explored and intensified by plant breeders and chemical ecologiste aiming at producing plant materials possessing appreciable levels of resistance to stemborers and able to encourage natural enemy activity in cereal-based ecosystems.

Résumé

Les lépidoptéres foreurs de tiges sont les principaux facteurs limitants de la production de maïs et de sorgho en Afrique et en Asie. La résistance de la plante hôte et la lutte biologique constituent des composantes importantes d'un programme de gestion intégrée des déprédateurs et peuvent maintenir efficacement les populations d'insectes á des niveaux inférieurs au seuil économique, principalement dans les systèmes de cultures de subsistance á faibles niveaux d'intrants. Lorsqu'elles sont endommagées par les herbivores nuisibles, les plantes sécrètent des substances allélochimiques qui peuvent attirer les ennemis naturels des insectes déprédateurs. Ces substances volatiles se dégagent de toute la plante et sont différentes de celles émises en réaction aux dégâts mécaniques. Nous apportons la preuve de l'existence de la réaction différentielle des substances volatiles induites de l'activité de parasitoïdes sur les génotypes du sorgho. Ces substances volatiles pourraient avoir un impact positif sur l'efficacité des ennemis naturels des foreurs de tiges, ce qui pourrait aboutir á une meilleure connaissance des hôtes lou á une meilleure efficacité de leur recherche et de ce fait á une plus grande élimination des populations de foreurs de tiges. Une étude de cas menée pendant une seule campagne a révélé que l'activité des parasitoïdes était plus intense chez les génotypes résistants aux foreurs de tiges que chez ceux qui y étaient sensibles et qu'elle variait avec l'âge des cultures. Les sélectionneurs et les écologistes chimiques soucieux de produire du matériel végétal possédant des niveaux appréciables de résistance aux foreurs de tiges et capables d'encourager l'activité de l'ennemi naturel dans les écosystémes de production céréalière, devraient explorer et intensifier la recherche sur ces interactions.

Type
Short Communication
Copyright
Copyright © ICIPE 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dicke, M. (1988) Prey preference of the phytoseid mite Typhlodromus pyri: 1. Responses to volatile kairomones. Exp. Appl. Acarol. 4, 113.CrossRefGoogle Scholar
Dicke, M. and Sabelis, M. W. (1988) How do plants obtain predatory mites as bodyguards? Neth. J. Zool. 38, 148165.CrossRefGoogle Scholar
Dicke, M. and Sabelis, M. W. (1989) Does it pay plants to advertise for bodyguards? Towards a cost-benefit analysis of induced synomone production, pp. 341358. In Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants (Edited by Lammers, H., Cambridge, M. L., Konings, H. and Pons, T. L.). SPB Acad Publ. The Hague.Google Scholar
Dicke, M., van der Maask, K., Takabayashi, J. and Vet, L. E. M. (1990a) Learning effects response to volatile allelochemicals by predatory mites. Proc. Exp. Appl. Ent. Neth. Ent. Soc. 1, 3136.Google Scholar
Dicke, M., Sabelis, M. W., Takabayashi, J., Bruin, J. and Posthumus, M. A. (1990b) Plant strategies of manipulating predator-prey interactions through allelochemicals: Prospects for application in pest control, J. chem. Ecol. 16, 30913118.CrossRefGoogle ScholarPubMed
Eller, F. J., Tumlinson, J. H. and Lewis, W. J. (1988) Beneficial arthropod behaviour mediated by airborne semiochemicals II. Olfactometric studies of host location by the parasitoid Microplitis croceipes (Cresson) (Hymenoptera : Braconidae). J. chem. Ecol. 14, 425434.Google Scholar
FAO (Food and Agriculture Organisation of the United Nations) (1994) FAO Production Yearbook, Rome, FAO. Vol. 48, 243 pp.Google Scholar
Kfir, R. (1995) Parasitoids of the African stemborer, Busseola fusca (Lepidoptera: Noctuidae), in South Africa. Bull. ent. Res. 85, 369377.CrossRefGoogle Scholar
Ngi-Song, A. J., Overholt, W. A., Njagi, P. G. N., Dicke, M., Ayertey, J. N. and Lwande, W. (1996) Volatile infochemicals used in host and host habitat location by Cotesia flavipes Cameron and Cotesia sesamiae Cameron (Hymenoptera: Braconidae), larval parasitoids of gramineous stemborers on graminae. J. chem. Ecol. 22, 307323.CrossRefGoogle Scholar
Nordlund, D. A., Lewis, W. J. and Altieri, M. A. (1988) Influences of plant-produced allelochemicals on the host and prey selection behaviour of entomophagous insects, pp. 6590. In Novel Aspects of Insect-Plant Interactions (Edited by Barbosa, P. and Letourneau, D.). John Wiley & Sons, New York.Google Scholar
Nwanze, K. F., Duale, A. H., Kausalya, K. G. and Reddy, Y. V. R. (1997) Host-plant-insect-parasitoid interactions in sorghum: Case studies with midge (Stenodiplosis sorghicola) and stem borer (Chilo partellus) and implications in resistance breeding, pp. 126136. In Integrating Biological Control and Host Plant Resistance. Proceedings of a CTA-IAR-IIBC Seminar, Addis Ababa 9–14 October 1995. Wageningen, The Netherlands: CTA, 1997.Google Scholar
Omwega, C. O., Kimani, S. W., Overholt, W. A. and Ogol, C. K. P. O. (1995) Evidence of the establishment of Cotesia flavipes (Hymenoptera: Braconidae) in continental Africa. Bull. Ent. Res. 85, 525530.CrossRefGoogle Scholar
Overholt, W. A., Ngi-Song, A. J., Kimani, S. K., Mbapila, J., Lammers, J. P. and Kioko, E. (1994) Ecological considerations of the introduction of Cotesia flavipes Cameron (Hymenoptera: Braconidae) for biological control of Chilo partellus Swinhoe (Lepidoptera: Braconidae), in Africa. Biocontr. News Info. 15, 1924.Google Scholar
Potting, R. P. J., Vet, L. E. M. and Dicke, M. (1995) Host microhabitat location by the stemborer parasitoid Cotesia flavipes: The role of herbivore volatiles and locally and systematically induced plant volatiles. J. Chem. Ecol. 21, 525539.Google Scholar
Sabelis, M. W. and van de Baan, H. E. (1983) Location of distant spider mite colonies by phy toseiid predators: Demonstration of specific kairomones emitted by Tetranychus urticae and Panonychus ulmi. Ent. Exp. Appl. 33, 303314.CrossRefGoogle Scholar
Seshu Reddy, K. V. (1991) Insect pests of sorghum in Africa. Insect Sci. Applic. 12, 563567.Google Scholar
Steinberg, S., Dicke, M. and Vet, L. E. M. (1993) Relative importance of infochemicals from first and second trophic levels in long-range host location by the larval parasitoid Cotesia glomerata. J. Chem. Ecol. 19, 4759.Google Scholar
Takabayashi, J., Takahashi, S., Dicke, M. and Posthumus, M. A. (1995) Effect of time on developmental stage of the herbivore Pseudaletia separata in the production of herbivore-induced synomone by corn plants. J. ehem. Ecol. 21, 273287.Google Scholar
Tallamy, D. W. and Raupp, M. J. (1991) Phytochemical Induction by Herbivores. John Wiley & Sons, New York, USA. 431 pp.Google Scholar
Taneja, S. L. and Leuschner, K. (1985) Methods of rearing, infestation and evaluation for Chilo partellus resistance in sorghum, pp. 175188. In Proceedings of the International Sorghum Entomology Workshop, 15–21 July 1984, College Station, Texas, USA. ICRISAT, Patancheru, A.P. 502 324, India.Google Scholar
Turlings, T. C. J. and Tumlinson, J. H. (1992) Systematic release of chemical signals by herbivore-injured corn. Proc. Nat. Acad. Sci. USA 89, 83998402.CrossRefGoogle Scholar
Turlings, T. C. J., Scheepmakeer, J. W. A., Vet, L. E. M., Tumlinson, J. H. and Lewis, W. J. (1990a) How contact foraging experiences affect preferences of host-related odours in the larval parasitoid Cotesia marginiventris Cresson (Hymenoptera: Braconidae). J. chem. Ecol. 16, 15771589.Google Scholar
Turlings, T. C. J., Tumlinson, J. H. and Lewis, W. J. (1990b) Exploitation of herbivore-induced plant odours by host-seeking parasitic wasps. Science 250, 12511253.Google Scholar
Turlings, T. C. J., Tumlinson, J. H., Heath, R. R., Proveaux, A. T. and Doolittle, R. E. (1991) Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts, J. chem. Ecol. 17, 22352251.CrossRefGoogle Scholar
Vet, L. E. M. and Dicke, M. (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37, 141172.Google Scholar