Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T20:16:37.961Z Has data issue: false hasContentIssue false

Effect of Temperature on the Development of Orius albidipennis Reuter, a Predator of the African Legume Flower Thrips, Megalurothrips sjostedti Trybom

Published online by Cambridge University Press:  19 September 2011

L.M. Gitonga
Affiliation:
Department of Zoology, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000 Nairobi, Kenya
B. Löhr
Affiliation:
GTZ-IPM Horticulture Project, P. O. Box 41607, Nairobi, Kenya
W. A. Overholt
Affiliation:
International Centre of Insect Physiology and Ecology, P. O. Box 30772, Nairobi 00506, Kenya E-mail: woverholt@icipe.org
J. K. Magambo
Affiliation:
Department of Zoology, Kenyatta University, P. O. Box 43844, Nairobi, Kenya
J. M. Mueke
Affiliation:
Department of Zoology, Kenyatta University, P. O. Box 43844, Nairobi, Kenya
Get access

Abstract

The effects of temperature on the development of Orius albidipennis (Reuter) (Hemiptera: Anthocoridae), reared on its prey, Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae), were studied in the laboratory. Nymphal mortality was 87, 48 and 38 % at 20, 25 and 30 °C, respectively. With the exception of first-instar nymphs, percentage mortality was lowest at 25 °C. Pre-oviposition period and longevity decreased with an increase in temperature. Mean daily and total fecundity were 2.1 and 76.4 respectively at 25 CC. The mean developmental period from oviposition to adult eclosion was 27.7, 14.1 and 10.9 days at 20, 25 and 30 °C respectively. There was a linear relationship between temperature and developmental rate (1/day) of O. albidipennis. Lower thermal thresholds were 13.8, 13.5, 12.7, 15.0, 13.8 and 12.5 °C for eggs and nymphal stages 1 to 5, respectively, with the corresponding average degree-day requirement of 46.9, 42.6, 33.3, 29.2, 26.1 and 51.4 days, respectively. The implications of these results for biological control of thrips are discussed.

Résumé

Les effets de la température sur le développement d'Orius albidipennis (Reuter) (Hemiptera: Anthocoridae) élevé sur sa proie, Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae), ont été étudiés au laboratoire. La mortalité des nymphes est respectivement de 87,48 et 38% à 20, 25 et 30 °C. A l'exception de la nymphe de ler stade, la mortalité est plus faible à 25 °C. La durée de pre-oviposition et la longévité diminuent lorsque la temperature augmente. La fécondité moyenne journalière et totale sont respectivement de 2,1 et 76,4 à 25 °C. La durée moyenne de développement de l'oviposition à l'émergence de l'adulte est respectivement de 27,7,14,1 et 10,9 jours à 20, 25 et 30 °C. II existe une relation linéaire entre le temperature et le taux de développement (1/jour) d'Orius albidipennis. Les seuils thermiques de développement inférieurs sont respectivement de 13,8, 13,5, 12,7, 15,0, 13,8 et 12,5 °C pour l'oeuf et les stades nymphaux 1 à 5 avec respectivement un besoin moyen en degrés jours de 46,9,42,6,33,3,29,2,26,1 et 51,4 jours. On discute des conséquences de ces résultats sur la lutte biologique contre les thrips.

Type
Research Articles
Copyright
Copyright © ICIPE 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Carnero, A., Pena, M. A., Perez-Padron, G. F., Garrido, C. and Hernandez, G. M. (1993) Bionomics of Orius albidipennis and Orius limbatus. Bull. IOBC/WPRS 16, 2730.Google Scholar
Castane, C. and Zalom, F. (1994) Artificial oviposition substrate for rearing Orius insidiosus (Hemiptera: Anthocoridae). Biological Control 4, 8891.CrossRefGoogle Scholar
Chyzik, R., Klein, M. and Ben-Dov, Y. (1995) Reproduction and survival of the predatory bug Orius albidipennis on various arthropod prey. Entomol. Exp. Appl. 75, 2731.CrossRefGoogle Scholar
Cocuzza, G. E., De Clercq, P., Van De Cock, M., Degheele, D. and Vacante, V. (1997a) Reproduction of Orius leavigatus and Orius albidipennis on pollen and Ephestia kuehniella eggs. Entomol. Exp. Appl. 82, 101104.CrossRefGoogle Scholar
Cocuzza, G. E., De Clercq, P., Lizzio, S., van de Veire, M., Tirry, L., Degheele, D. and Vacante, V. (1997b) Life tables and predation activity of Orius leavigatus and Orius albidipennis at three constant temperatures. Entomol. Exp. Appl. 85, 189198.Google Scholar
Coll, M. and Ridgway, R. L. (1995) Functional and numerical responses of Orius insidiosus (Heteroptera: Anthocoridae) to its prey in different vegetable crops. Ann. Entomol. Soc. Am. 88, 732738.CrossRefGoogle Scholar
Isenhour, D. J. and Yeargan, K. V. (1981a) Predation by Orius insidiosus on soybean thrips Sericothrips variabilis: Effect of prey stage and density. Environ. Entomol. 10, 496500.CrossRefGoogle Scholar
Isenhour, D. J. and Yeargan, K. V. (1981b) Effect of temperature on the development of Orius insidiosus, with notes on laboratory rearing. Ann. Entomol. Soc. Am. 74, 114116.CrossRefGoogle Scholar
Kibanga, C. (1996) Overview of Kenyan horticultural industry. Horticultural Trade J. 4, 35.Google Scholar
Kiman, Z. B. and Yeargan, K. V. (1985) Development and reproduction of the predator Orius insidiosus (Hemiptera: Anthocoridae) reared on djets of selected plant material and arthropod prey. Ann. Entomol. Soc. Am. 78, 464–167.CrossRefGoogle Scholar
Kohno, K. and Kashio, T. (1998) Development and prey consumption of Orius sauteri (Poppius) and O. minutus (L.) (Heteroptera: Anthocoridae) fed on Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Appl. Entomol Zool. 33, 227230.Google Scholar
Kyamanywa, S. (1988) Ecological factors governing the bean flower thrips Megalurothrips sjostedti Trybom, (Thripidae) populations in cowpea/maize mixed cropped systems. PhD Thesis. Makerere University.Google Scholar
Lohr, B. and Michalik, S. (1995) In defense of French beans: Developing an integrated pest management system for French bean production in Kenya. Horticultural Trade J. 3, 913.Google Scholar
McCaffrey, J. P. and Horsburgh, R. L. (1986) Functional response of Orius insidiosus (Hemiptera: Anthocoridae) to the European red mite Panonychus ulmi (Acari: Tetranychidae), at different constant temperatures. Environ. Entomol. 15, 532535.CrossRefGoogle Scholar
Meiracker, R. A. F. and Ramakers, P. M. J. (1991) Biological control of western flower thrips, Frankliniella occidentalis in sweet pepper with the anthocorid predator Onus insidiosus. Med. Fac. Landbouww. Rijksuniv. Gent. 56, 241249.Google Scholar
Richards, P. C. and Schmidt, J. M. (1996) The suitability of some natural and artificial substrates as oviposition sites for the insidious flower bug, Orius insidiosus. Entomol. Exp. Appl. 80, 325333.CrossRefGoogle Scholar
Riudavets, J. (1995) Predators of Frankliniella occidentalis Perg. and Thrips tabaci Lind.: A review. Biological Control of Thrips Pests. Wageningen Agric. Univ. Papers 95, 4678.Google Scholar
Riudavets, J. and Castane, C. (1998) Identification and evaluation of native predators of Frankliniella occidentalis (Thysanoptera: Thripidae) in the Mediterranean. Environ. Entomol. 27, 8693.Google Scholar
Ruberson, J. R., Bush, L. and Kring, T. J. (1991) Photo-periodic effect on diapause induction and development in the predator Orius insidiosus (Heteroptera: Anthocoridae). Environ. Entomol. 20, 786789.CrossRefGoogle Scholar
Ruesink, P. G. (1976) Status of systems approach to pest management. Annu. Rev. Entomol. 21, 2744.CrossRefGoogle Scholar
SAS Institute (1996) Changes and Enhancements through Release 6.12. SAS Institute Inc. Cary, NC, USA, 1162 pp.Google Scholar
Van de Veire, M. and Degheele, D. (1992) Biological control of western flower thrips, Frankliniella occidentalis Perg. (Thysanoptera: Thripidae) in glasshouse sweet peppers with Orius spp. (Hemiptera: Anthocoridae). A comparative study between O. niger Wolff and O. insidiosus (Say). Biocontr. Sci. Technol. 2, 281283.CrossRefGoogle Scholar