Skip to main content Accessibility help


  • Janne C. Mewes (a1), Lotte M.G. Steuten (a2), Maarten J. IJzerman (a3) and Wim H. van Harten (a1) (a4)


Objectives: Multicomponent interventions (MCIs), consisting of at least two interventions, are common in rehabilitation and other healthcare fields. When the effectiveness of the MCI versus that of its single interventions is comparable or unknown, evidence of their expected incremental cost-effectiveness can be helpful in deciding which intervention to recommend. As such evidence often is unavailable this study proposes an approach to estimate what is more cost-effective; the MCI or the single intervention(s).

Methods: We reviewed the literature for potential methods. Of those identified, headroom analysis was selected as the most suitable basis for developing the approach, based on the criteria of being able to estimate the cost-effectiveness of the single interventions versus that of the MCI (a) within a limited time frame, (b) in the absence of full data, and (c) taking into account carry-over and interaction effects. We illustrated the approach with an MCI for cancer survivors.

Results: The approach starts with analyzing the costs of the MCI. Given a specific willingness-to-pay-value, it is analyzed how much effectiveness the MCI would need to generate to be considered cost-effective, and if this is likely to be attained. Finally, the cost-effectiveness of the single interventions relative to the potential of the MCI for being cost-effective can be compared.

Conclusions: A systematic approach using headroom analysis was developed for estimating whether an MCI is likely to be more cost effective than one (or more) of its single interventions.



Hide All
1. Comprehensive Cancer Centre the Netherlands (IKNL). Cancer rehabilitation - Nation-Wide Guideline. Utrecht: IKNL; 2011.
2. Balinsky, W, Muennig, P. The costs and outcomes of multifaceted interventions designed to improve the care of congestive heart failure in the inpatient setting: A review of the literature. Med Care Res Rev. 2003;60:275293.
3. Chou, R, Loeser, JD, Owens, DK, et al. Interventional therapies, surgery, and interdisciplinary rehabilitation for low back pain. Spine. 2009;34:10661077.
4. Prvu Bettger, JA, Stineman, MG. Effectiveness of multidisciplinary rehabilitation services in postacute care: State-of-the-science. A review. Arch Phys Med Rehabil. 2007;88:15261534.
5. Smeets, RJ, Severens, JL, Beelen, S, et al. More is not always better: Cost-effectiveness analysis of combined, single behavioral and single physical rehabilitation programs for chronic low back pain. Eur J Pain. 2009;13:7181.
6. IOM (Institute of Medicine). Cognitive rehabilitation therapy for traumatic brain injury: Evaluating the evidence. Washington, DC: The National Academies Press; 2011.
7. Ollendorf, DA, Silverstein, MD, Andry, A, et al. Management options for patients with low back disorders: Final appraisal document. Boston: Institute for Clinical and Economic Review; 2011.
8. Saevarsson, S, Halsband, U, Kristjánsson, Á. Designing rehabilitation programs for neglect: Could 2 be more than 1+1? Appl Neuropsychol. 2011;18:95106.
9. Ollenschlager, G. Improving the quality of health care: Using international collaboration to inform guideline programmes by founding the Guidelines International Network (G-I-N). Qual Saf Health Care. 2004;13:455460.
10. Qaseem, A, Forland, F, Macbeth, F, et al. Guidelines International Network: Toward international standards for clinical practice guidelines. Ann Intern Med. 2012;156:525531.
11. Mason, J, Eccles, M, Freemantle, N, et al. A framework for incorporating cost-effectiveness in evidence-based clinical practice guidelines. Health Policy. 1999;47:3752.
12. Rickles, D, Hawe, P, Shiell, A. A simple guide to chaos and complexity. J Epidemiol Commun Health. 2007;61:933937.
13. Lovemen, E, Frampton, GK, Shepherd, J, et al. The clinical effectiveness and cost-effectiveness of long-term weight management schemes for adults: A systematic review. Health Technol Assess. 2011;15:1182.
14. Ramsey, SD, Willke, RJ, Glick, H, et al. Cost-effectiveness analysis alongside clinical trials II-An ISPOR Good Research Practices Task Force report. Value Health. 2015;18:161172.
15. Hay, J, Smeeding, J, Carroll, N, et al. Good research practices for measuring drug costs in cost effectiveness analyses: Issues and recommendations: The ISPOR Drug Cost Task Force Report–Part 1. Value Health. 2010;13:37.
16. Guyatt, G, Oxman, A, Vist, G, et al. GRADE: What is “quality of evidence” and why is it important to clinicans? BMJ. 2008;336:995998.
17. Danish Centre for Evaluation and Health Technology Assessment (DACEHTA). Introduction to mini-HTA - A management and decision support tool for the hospital service. Copenhagen: DACEHTA; 2005.
18. Senn, S. Cross-over trials in clinical research. Chichester: John Wiley & Sons; 1993.
19. synergy, Geary N. Understanding. Am J Physiol Endocrinol Metab. 2013;304:E237E253.
20. Hollingsworth, B, Peacock, S. Efficiency measurement in health and health care. New York: Routledge; 2008.
21. Duijts, SFA, Van Beurden M, Oldenburg HSA, et al. Efficacy of cognitive behavioral therapy and physical exercise in alleviating treatment-induced menopausal symptoms in patients with breast cancer: Results of a randomized, controlled, multicenter trial. J Clin Oncol. 2012;30:41244133.
22. Mewes, J, Steuten, LD, Oldenburg, H SFA, et al. Cost-effectiveness of cognitive behavioral therapy and physical exercise for alleviating treatment-induced menopausal symptoms in breast cancer patients. J Cancer Surviv. 2014;9:126135.
23. Duijts, SFA, Oldenburg, HSA, van Beurden, M, et al. Cognitive behavioral therapy and physical exercise for climacteric symptoms in breast cancer patients experiencing treatment-induced menopause: Design of a multicenter trial. BMC Womens Health. 2009;9:15.
24. Ivarsson, T, Spetz, AC, Hammar, M. Physical exercise and vasomotor symptoms in postmenopausal women. Maturitas. 1998;29:139146.
25. Li, C, Samsioe, G, Borgfeldt, C, et al. Menopause-related symptoms: What are the background factors? A prospective population-based cohort study of Swedish women (The Women's Health in Lund Area study). Am J Obstet Gynecol. 2003;189:16461653.
26. Hunter, M. Cognitive behavioural interventions for premenstrual and menopausal symptoms. J Reprod Infant Psychol. 2003;21:183193.
27. McKinlay, SM, Brambilla, DJ, Posner, JG. Reprint of the normal menopausal transition. Maturitas. 2008;61:416.
28. Duijts, SFA, Faber, MM, Oldenburg, HSA, et al. Effectiveness of behavioral techniques and physical exercise on psychosocial functioning and health-related quality of life in breast cancer patients and survivors-a meta-analysis. Psycho-Oncology. 2011;20:115126.
29. Eccles, M, Mason, J. How to develop cost-conscious guidelines. Health Technol Assess. 2001;5:178.
30. Gandjour, A, Lauterbach, KW. A method for assessing the cost-effectiveness and the break-even point of clinical practice guidelines. Int J Technol Assess Health Care. 2001;17:503516.
31. OECD. Cost-benefit analysis and the environment: Recent developments. Paris: OECD; 2006.
32. Dixon, J. Economic cost-benefit analysis (CBA) of project environmental issues and mitigation measures: Implementation guideline. Washington, DC: Inter-American Development Bank; 2012.
33. Heinzerling, L, Ackerman, F. Pricing the priceless: Cost-benefit analysis of environmental protection. Washington, DC: Georgetown University; 2002.
34. Liu, W, Kuramoto, SJ, Stuart, EA. An introduction to sensitivity analysis for unobserved confounding in nonexperimental prevention research. Prev Sci. 2013;14:570580.
35. Basu, A, Dale, W, Elstein, A, et al. A linear index for predicting joint health-states utilities from single health-states utilities. Health Econ. 2009;18:403419.
36. Barasa, EW, Ayieko, P, Cleary, S, et al. A multifaceted intervention to improve the quality of care of children in district hospitals in Kenya: A cost-effectiveness analysis. PLoS Med. 2012;9:e1001238.
37. Lee, CC, Czaja, SJ, Schulz, R. The moderating influence of demographic characteristics, social support, and religious coping on the effectiveness of a multicomponent psychosocial caregiver intervention in three racial ethnic groups. J Gerontol B Psychol Sci Soc Sci. 2010;65B:185194.
38. Helgeson, VS, Lepore, SJ, Eton, DT. Moderators of the benefits of psychoeducational interventions for men with prostate cancer. Health Psychol. 2006;25:348354.
39. Schootman, M, Deshpande, AD, Pruitt, S, et al. Estimated effects of potential interventions to prevent decreases in self-rated health among breast cancer survivors. Ann Epidemiol. 2012;22:7986.
34. Barasa, EW, English, M. Viewpoint: Economic evaluation of package of care interventions employing clinical guidelines. Trop Med Int Health. 2011;16:97104.
41. Ahern, J, Hubbard, A, Galea, S. Estimating the effects of potential public health interventions on population disease burden: A step-by-step illustration of causal inference methods. Am J Epidemiol. 2009;169:11401147.
42. Hardeman, W. A causal modelling approach to the development of theory-based behaviour change programmes for trial evaluation. Health Educ Res. 2005;20:676-87.
43. Gandjour, A. A model to predict the cost-effectiveness of disease management programs. Health Econ. 2009;19:697715.
44. Brooks, JM, Fang, G. Interpreting treatment-effect estimates with heterogeneity and choice: Simulation model results. Clin Ther. 2009;31:902919.
45. Hersh, AL, Black, WC, Tosteson, ANA. Estimating the population impact of an intervention: A decision-analytic approach. Stat Methods Med Res. 1999;8:311330.
46. Becker, MG, Glass, K, Barnes, B, et al. Using mathematical models to assess response to an outbreak of an emerged viral repiratory disease. The Australian National University: National Centre for Epidemiology and Population Health; 2006.
47. Tappenden, P, Chilcott, J, Brennan, A, et al. Whole disease modeling to inform resource allocation decisions in cancer: A methodological framework. Value Health. 2012;15:11271136.
48. Belle, SH, Czaja, SJ, Schulz, R, et al. Using a new taxonomy to combine the uncombinable: Integrating results across diverse interventions. Psychol Aging. 2003;18:396405.
49. Schulz, R, Czaja, SJ, McKay, JR, et al. Intervention taxanomy (ITAX): Describing essential features of interventions (HMC). Am J Health Behav. 2010;34:811821.
50. Gitlin, LN, Belle, SH, Burgio, LD, et al. Effect of multicomponent interventions on caregiver burden and depression: The REACH multisite initiative at 6-month follow-up. Psychol Aging. 2003;18:361374.
51. Schouten, LMT, Grol, RPTM, Hulscher, MEJL. Factors influencing success in quality-improvement collaboratives: Development and psychometric testing of an instrument. Implement Sci. 2010;5:84.
52. Czaja, SJ, Schulz, R, Lee, CC, et al. A methodology for describing and decomposing complex psychosocial and behavioral interventions. Psychol Aging. 2003;18:385395.
53. Cobiac, LJ, Vos, T, Barendregt, JJ. Cost-effectiveness of interventions to promote physical activity: A modelling study. PLoS Med. 2009;6:e1000110.
54. Gentry, D, Herbers, S, Shelton, S, et al. What is it worth? Economic evaluation of the MFH Tobacco Initiative. St. Louis: Missouri Foundation for Health; 2009.
55. Hoaglin, DC, Hawkins, N, Jansen, JP, et al. Conducting indirect-treatment-comparison and network-meta-analysis studies: Report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: Part 2. Value Health. 2011;14:429437.
56. Jansen, JP, Fleurence, R, Devine, B, et al. Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: Report of the ISPOR Task Force on indirect treatment comparisons good research practices: part 1. Value Health. 2011;14:417428.
57. IJzerman, MJ, Steuten, LMG. Early assessment of medical technologies to inform product development and market access: A review of methods and applications. Appl Health Econ Health Policy. 2011;9:331347.
58. Cosh, E, Girling, A, Lilford, R, et al. Investing in new medical technologies: A decision framework. J Commer Biotechnol. 2007;13:263271.
59. McAteer, H, Cosh, E, Freeman, G, et al. Cost-effectiveness analysis at the development phase of a potential health technology: Examples based on tissue engineering of bladder and urethra. J Tissue Eng Regen Med. 2007;1:343349.
60. Girling, A, Lilford, R, Cole, A, Young, T. Headroom approach to device development: Current and future directions. Int J Technol Assess Health Care. 2015;31:331338.
61. Moore, GF, Audrey, S, Barker, M et al. Process evaluation of complex interventions: Medical Research Council Guideline. BMJ. 2016;350:h1258.
62. Bonell, C, Fletcher, A, Morton, M, et al. Realist randomised controlled trials: A new approach to evaluating complex public health interventions. Soc Sci Med. 2012;75:22992306.
63. Moore, G, Audrey, S, Barker, M, et al. Process evaluation of complex interventions: Medical Research Council guidance. London: MRC Population Health Science Research Network; 2014.
64. Moore, G, Audrey, S, Barker, M, et al. Process evaluation of complex interventions: Medical Research Council guidance. BMJ. 2015;350:h1258.
65. Chandler, CIR, DiLiberto, D, Nayiga, S, et al. The PROCESS study: A protocol to evaluate the implementation, mechanisms of effect and context of an intervention to enhance public health centres in Tororo, Uganda. Implement Sci. 2013;8:113.



  • Janne C. Mewes (a1), Lotte M.G. Steuten (a2), Maarten J. IJzerman (a3) and Wim H. van Harten (a1) (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed