Skip to main content Accessibility help
×
Home

Integrating health economics modeling in the product development cycle of medical devices: A Bayesian approach

  • Laura Vallejo-Torres (a1), Lotte M. G. Steuten (a1), Martin J. Buxton (a1), Alan J. Girling (a2), Richard J. Lilford (a2) and Terry Young (a1)...

Abstract

Objectives: Medical device companies are under growing pressure to provide health-economic evaluations of their products. Cost-effectiveness analyses are commonly undertaken as a one-off exercise at the late stage of development of new technologies; however, the benefits of an iterative use of economic evaluation during the development process of new products have been acknowledged in the literature. Furthermore, the use of Bayesian methods within health technology assessment has been shown to be of particular value in the dynamic framework of technology appraisal when new information becomes available in the life cycle of technologies.

Methods: In this study, we set out a methodology to adapt these methods for their application to directly support investment decisions in a commercial setting from early stages of the development of new medical devices.

Results and Conclusions: Starting with relatively simple analysis from the very early development phase and proceeding to greater depth of analysis at later stages, a Bayesian approach facilitates the incorporation of all available evidence and would help companies to make better informed choices at each decision point.

Copyright

Corresponding author

Corresponding author. Laura Vallejo-Torres, Multidisciplinary Assessment of Technology Centre for Healthcare (MATCH), Health Economics Research Group, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom. Email: laura.vallejo@brunel.ac.uk, Phone: +44 (0)1895 267394. Fax: +44 (0)1895 269708.

References

Hide All
1. Campbell, G. Guidance of the use of Bayesian statistic in medical device clinical trials. Food and Drug Administration; 2006. http://www.fda.gov/cdrh/osb/guidance/1601.pdf.
2. Claxton, K, Sculpher, M, Drummond, M. A rational framework for decision making by the National Institute for Clinical Excellence (NICE). Lancet. 2002;360:711715.
3. Cosh, E, Girling, A, Lilford, R, et al. Investing in new medical technologies: A decision framework. J Commer Biotechnol. 2007;13:263271.
4. Dong, H, Buxton, M. Early assessment of the likely cost-effectiveness of a new technology: A Markov model with probabilistic sensitivity analysis of computer-assisted total knee replacement. Int J Technol Assess Health Care. 2006;22:191202.
5. Fenwick, E, Palmer, S, Claxton, K, et al. An iterative Bayesian approach to health technology assessment: Application to a policy of preoperative optimization for patients undergoing major elective surgery. Med Decis Making. 2006;26:480496.
6. Girling, A, Freeman, G, Gordon, JP, et al. Modelling payback from research into the efficacy of left-ventricular assist devices as destination therapy. Int J Technol Assess Health Care. 2007;23:269277.
7. Martin, J, Murphy, E, Crowe, JA, Norris, BJ. Capturing user requirements in medical device development: The role of ergonomics. Physiol Meas. 2006;27:R49-R62.
8. National Institute for Clinical Excellence. Guide to the methods of technology appraisal. London: NICE; 2004.
9. O'Hagan, A, Buck, CE, Daneshkhah, A, et al. Uncertain judgements - Eliciting experts' probabilities. London: Wiley; 2006.
10. Prevost, TC, Abrams, KR, Jones, DR. Hierarchical models in generalised synthesis of evidence: An example based on studies of breast cancer. Stat Med. 2000;19:33593376.
11. Sculpher, M, Claxton, K, Drummond, M, McCabe, C. Whither trial-based economic evaluation for health care decision making? Health Econ. 2006;15:677687.
12. Sculpher, M, Drummond, M, Buxton, MJ. The iterative use of economic evaluation as part of the process of health technology assessment. J Health Serv Res Policy. 1997;2:2630.
13. Siebert, M, Clauss, LC, Carlisle, M, et al. Health technology assessment for medical devices in Europe: What must be considered. Int J Technol Assess Health Care. 2002;18:733740.
14. Spiegelhalter, DJ, Myles, JP, Jones, DR, Abrams KR. Bayesian methods in health technology assessment: A review. Health Technol Assess. 2000;4:1130.
15. Spiegelhalter, DJ, Myles, JP, Jones, DR, Abrams, KR. Methods in health service research: An introduction to Bayesian methods in health technology assessment. BMJ. 1999;319:508512.
16. Sutton, A, Abrams, KR. Bayesian methods in meta-analysis and evidence synthesis. Stat Methods Med Res. 2001;10:277303.
17. Torgerson, CJ, Torgerson, DJ. The need for pragmatic experimentation in educational research. Econ Innov New Technol. 2007;16:323330.
18. van Til, JA, Renzenbrink, GJ, Groothuis, K, Ijzerman, MJ. A preliminary economic evaluation of percutaneous neuromuscular electrical stimulation in the treatment of hemiplegic shoulder pain. Disabil Rehabil. 2006;28:645651.
19. Warburton, RN. Patient safety—how much is enough? Health policy 2005;75:223232.

Keywords

Integrating health economics modeling in the product development cycle of medical devices: A Bayesian approach

  • Laura Vallejo-Torres (a1), Lotte M. G. Steuten (a1), Martin J. Buxton (a1), Alan J. Girling (a2), Richard J. Lilford (a2) and Terry Young (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed