Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-19T09:49:41.606Z Has data issue: false hasContentIssue false

X-band T/R-module front-end based on GaN MMICs

Published online by Cambridge University Press:  22 June 2009

Patrick Schuh*
Affiliation:
EADS Deutschland GmbH, Defence Electronics, Wörthstrasse 85, 89077 Ulm, Germany.
Hardy Sledzik
Affiliation:
EADS Deutschland GmbH, Defence Electronics, Wörthstrasse 85, 89077 Ulm, Germany.
Rolf Reber
Affiliation:
EADS Deutschland GmbH, Defence Electronics, Wörthstrasse 85, 89077 Ulm, Germany.
Andreas Fleckenstein
Affiliation:
EADS Deutschland GmbH, Defence Electronics, Wörthstrasse 85, 89077 Ulm, Germany.
Ralf Leberer
Affiliation:
EADS Deutschland GmbH, Defence Electronics, Wörthstrasse 85, 89077 Ulm, Germany.
Martin Oppermann
Affiliation:
EADS Deutschland GmbH, Defence Electronics, Wörthstrasse 85, 89077 Ulm, Germany.
Rüdiger Quay
Affiliation:
Fraunhofer Institute of Applied Solid-State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Friedbert van Raay
Affiliation:
Fraunhofer Institute of Applied Solid-State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Matthias Seelmann-Eggebert
Affiliation:
Fraunhofer Institute of Applied Solid-State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Rudolf Kiefer
Affiliation:
Fraunhofer Institute of Applied Solid-State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
Michael Mikulla
Affiliation:
Fraunhofer Institute of Applied Solid-State Physics, Tullastrasse 72, 79108 Freiburg, Germany.
*
Corresponding author: P. Schuh Email: patrick.schuh@ieee.org

Abstract

Amplifiers for the next generation of T/R modules in future active array antennas are realized as monolithically integrated circuits (MMIC) on the basis of novel AlGaN/GaN (is a chemical material description) high electron mobility transistor (HEMT) structures. Both low-noise and power amplifiers are designed for X-band frequencies. The MMICs are designed, simulated, and fabricated using a novel via-hole microstrip technology. Output power levels of 6.8 W (38 dBm) for the driver amplifier (DA) and 20 W (43 dBm) for the high-power amplifier (HPA) are measured. The measured noise figure of the low-noise amplifier (LNA) is in the range of 1.5 dB. A T/R-module front-end with mounted GaN MMICs is designed based on a multi-layer low-temperature cofired ceramic technology (LTCC).

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Holpp, W.; Worning, C.: New electronically scanned array radars for airborne applications, in Asia Pacific Microwave Conf. Proc., Bangkok, December 2007.CrossRefGoogle Scholar
[2]Mancuso, Y.; Gremillet, P.; Lacomme, P.: T/R-modules technological and technical trends for phased array antennas, in IEEE Microwave Theory and Techniques Symp. Digest, San Francisco, June 2006, 614617.CrossRefGoogle Scholar
[3]Hommel, H.; Feldle, H.-P.: Current status of airborne active phased array (AESA) radar systems and future trends, in European Radar Conf. Digest, Amsterdam, 2004 121124.CrossRefGoogle Scholar
[4]Kopp, B.A.; Borkowski, M.; Jerinic, G.: Transmit/receive modules. IEEE Trans. Microwave Theory Tech., 50 (2002), 827834.CrossRefGoogle Scholar
[5]Kinghorn, A.M.: Where next for airborne AESA technology?, in IEEE Radar Conf. Proc., Rome, May 2008, 287290.CrossRefGoogle Scholar
[6]Edwards, T.: Semiconductor technology trends for phased array antenna power amplifiers, in European Radar Conf. Proc., Manchester, October 2006, 269272.CrossRefGoogle Scholar
[7]Ender, J.H.G. et al. : Progress in phased-array radar applications, in European Radar Conf. Proc., Amsterdam, October 2004, 113116.CrossRefGoogle Scholar
[8]Sheppard, S.T. et al. : High power hybrid and MMIC amplifiers using wide-bandgap semiconductor devices on semi-insulating SiC substrates, in Device Research Conf. Digest, June 2002, 175178.Google Scholar
[9]Costrini, C. et al. : A 20 watt microstrip X-Band AlGaN/GaN HPA MMIC for advanced radar applications, in European Microwave Integrated Circuit Conf. Proc., Amsterdam, October 2008, 566569.CrossRefGoogle Scholar
[10]Fanning, D.M. et al. : 25W X-band GaN on SI MMIC, in Compound Semiconductor Manufacturing Technology Conf. Digest, 2005.Google Scholar
[11]Piotrowicz, S.; Morvan, E.; Aubry, R. et al. : State of the art 58W, 38% PAE X-Band AlGaN/GaN HEMTs microstrip MMIC amplifiers, in Compound Semiconductor Integrated Circuits Symp. Proc., October 2008, 14.CrossRefGoogle Scholar
[12]Schwindt, R.; Kumar, V.; Aktas, O.; Lee, J.-W.; Adesida, I.: AlGaN/GaN HEMT-based fully monolithic X-band low noise amplifier. Phys. Status Solidi (c), 2 (2005), 26312634.CrossRefGoogle Scholar
[13]Janssen, J.; van Heijningen, M.; Provenzano, G.; Visser, G.; Morvan, E.; van Vliet, F.: X-band robust AlGaN/GaN receiver MMICs with over 41 dBm power handling, in Compound Semiconductor Integrated Circuits Symp. Proc., October 2008, 14.CrossRefGoogle Scholar
[14]Seelmann-Eggebert, M.; Merkle, T.; van Raay, F.; Quay, R.; Schlechtweg, M.: A systematic state-space approach to large-signal transistor modelling. IEEE Trans. Microwave Theory Tech., 55 (2007), 195206.CrossRefGoogle Scholar
[15]Rudolph, M. et al. : Analysis of the survivability of GaN low-noise amplifiers. IEEE Trans. Microwave Theory Tech., 55 (2007), 3743.CrossRefGoogle Scholar
[16]Schuh, P. et al. : GaN MMIC based T/R-module front-end for X-band applications, in European Microwave Integrated Circuit Conf. Proc., Amsterdam, October 2008, 274277.CrossRefGoogle Scholar
[17]Feldle, H.-P.; Reber, R.: Monolithic low noise amplifier for X-band applications, in Gallium Arsenide Application Symp. Proc., Amsterdam, 1998, 205209.Google Scholar