Skip to main content Accessibility help

A proposed simulation technique to study the series resistance and related millimeter-wave properties of Ka-band Si IMPATTs from the electric field snapshots

  • Aritra Acharyya (a1), Suranjana Banerjee (a1) (a2) and J. P. Banerjee (a1) (a2)


A large-signal model and a simulation technique based on non-sinusoidal voltage excitation are used to obtain the electric field snapshots from which the series resistance and related high-frequency properties of a 35 GHz Silicon Single-Drift Region (SDR) Impact Avalanche Transit Time (IMPATT) device have been estimated for different bias current densities. A novel method is proposed in this paper to determine the parasitic series resistance of a millimeter-wave IMPATT device from large-signal electric field snapshots at different phase angles of a full cycle of steady-state oscillation. The method is based on the depletion width modulation of the device under a large-signal condition. The series resistance of the device is also obtained from the large-signal admittance characteristics at threshold frequency. The values of series resistance of a 35 GHz SDR IMPATT diode obtained from the proposed method and the large-signal admittance method are compared with experimentally reported values. The results show that the proposed method provides better and closer agreement with the experimental value.


Corresponding author

Corresponding author: A. Acharyya Email:


Hide All
[1]Midford, T.A.; Bernick, R.L.: Millimeter wave CW IMPATT diodes and oscillators. IEEE Trans. Microw. Theory Tech, 27 (1979), 483492.
[2]Chang, Y.; Hellum, J.M.; Paul, J.A.; Weller, K.P.: Millimeter-wave IMPATT sources for communication applications. IEEE MTT-S Int. Microwave Symp. Digest, 1977, 216219.
[3]Gray, W.W.; Kikushima, L.; Morentc, N.P.; Wagner, R.J.: Applying IMPATT power sources to modern microwave systems. IEEE J. Solid-State Circuits, 4 (1969), 409413.
[4]Ray, U.C.; Gupta, A.K.: Measurement of electrical series resistance of W-band Si IMPATT diode. in Second Asia Pacific Microwave Conf. Proc., China, 1988, 434437.
[5]Misawa, T.: Multiple uniform layer approximation in analysis of negative resistance in p-n junction in breakdown. IEEE Trans. Electron Devices, 14 (1967), 795808.
[6]Adlerstein, M.G.; Holway, L.H.; Chu, S.L.G.: Measurement of series resistance in IMPATT diodes. IEEE Trans. Electron Devices, 30 (1983), 179182.
[7]Mitra, M.; Das, M.; Kar, S.; Roy, S.K.: A study of the electrical series resistance of Si IMPATT diodes. IEEE Trans. Electron Devices, 40 (1993), 18901893.
[8]Pal, T.K.: Series resistance of silicon millimeter wave (Ka-band) IMPATT diodes. Def. Sci. J., 59 (2009), 189193.
[9]Acharyya, A.; Banerjee, S.; Banerjee, J.P.: Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device. J. Semicond., 34 (2013), 024001–12.
[10]Acharyya, A.; Banerjee, S.; Banerjee, J. P.: Large-signal simulation of 94 GHz pulsed DDR silicon IMPATTs including the temperature transient effect. Radioengineering, 21 (2012), 12181225.
[11]Acharyya, A.; Banerjee, S.; Banerjee, J.P.: Temperature transient effect on the large-signal properties and frequency chirping in pulsed silicon DDR IMPATTs at 94 GHz, in IEEE Conf. CODEC 2012, Kolkata, India, 2012, 13.
[12]Pal, T.K.; Banerjee, J.P.: Design, fabrication and RF characterization of Ka-band silicon IMPATT diode. Int. J. Eng. Sci. Technol., 2 (2010), 47754790.
[13]Grant, W.N.: Electron and hole ionization rates in epitaxial silicon. Solid State Electron, 16 (1973), 11891203.
[14]Canali, C.; Ottaviani, G.; Quaranta, A.A.: Drift velocity of electrons and holes and associated anisotropic effects in silicon. J. Phys. Chem. Solids, 32 (1971), 1707.
[15]Zeghbroeck, B.V.: Principles of Semiconductor Devices, Colorado Press, USA, 2011.
[16]Electronic Archive: New Semiconductor Materials, Characteristics and Properties:
[17]Resistivity, conductivity and temperature coefficients for some common materials:
[18]Kurokawa, K.: Some basic characteristics to broadband negative resistance oscillators. Bell. Syst. Tech. J., 48 (1969), 19371955.
[19]Sridharan, M.; Roy, S.K.: Computer studies on the widening of the avalanche zone and decrease on efficiency in silicon X-band sym. DDR. Electron Lett., 14 (1978), 635637.
[20]Sridharan, M.; Roy, S.K.: Effect of mobile space charge on the small signal admittance of silicon DDR. Solid State Electron, 23 (1980), 10011003.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed