Skip to main content Accessibility help
×
Home

Position gauging of welding joints with an FMCW-based mm-wave radar system

  • Jochen O. Schrattenecker (a1), Stefan Schuster (a2), Christian M. Schmid (a3), Werner Scheiblhofer (a1), Helmut Ennsbrunner (a4) and Andreas Stelzer (a1)...

Abstract

This paper presents a position gauging system of welding joints. While the principle measurement concept was already introduced by Schrattenecker et al. in 2014, here it is focused on different types of practically used welding materials. The sensor used is based on the frequency-modulated continuous-wave principle operating in the W-band. Position estimation (PoE) of different welding geometries is carried out with polarimetric scattering effects introduced by geometrical discontinuities. For the real-time calculation of the signal models a field simulation tool we developed is used. Aside from a variety of geometries, we introduce a geometrical optimization approach that increases the achievable accuracy of the measurement concept. The optimization and PoE of the different welding materials were examined in various simulations and the results were verified by measurements in the laboratory and in an industrial environment. Simulation and measurement were in good agreement.

Copyright

Corresponding author

Corresponding author: J.O. Schrattenecker Email: j.schrattenecker@nthfs.jku.at

References

Hide All
[1] Schrattenecker, J.O.; Schuster, S.; Scheiblhofer, W.; Reinthaler, G.; Ennsbrunner, H.; Stelzer, A.: Hardware and signal processing for a novel multi-lap-joint measurement system for automated welding applications. IEEE Trans. Instrum. Meas., 63 (12) (2014), 30963110.
[2] Jahn, M.; Aufinger, K.; Stelzer, A.: A 140-GHz single-chip transceiver in a SiGe technology, in 7th Europena Microwave Integrated, October 2012, 361–364.
[3] Fischer, A.; Tong, Z.; Hamidipour, A.; Maurer, L.; Stelzer, A.: 77-GHz multi-channel radar transceiver with antenna in package. IEEE Trans. Antennas Propag., 62 (3) (2014), 13861394.
[4] Ghasr, M.T.; Case, J.T.; Zoughi, R.: Novel reflectometer for millimeter-wave 3-D holographic imaging. IEEE Trans. Instrum. Meas., 63 (5) (2014), 13281336.
[5] Ascione, M.; Buonanno, A.; D'Urso, M.; Angrisani, L.; Schiano Lo Moriello, R.: A new measurement method based on music algorithm for through-the-wall detection of life signs. IEEE Trans. Instrum. Meas., 62 (1) (2013), 1326.
[6] Catarinucci, L.; Donno, D.D.; Colella, R.; Ricciato, F.; Tarricone, L.: A cost-effective SDR platform for performance characterization of RFID tags. IEEE Trans. Instrum. Meas., 61 (4) (2012), 903911.
[7] Feger, R.; Pfeffer, C.; Scheiblhofer, W.; Schmid, C.M.; Lang, M.J.; Stelzer, A.: A 77-GHz cooperative radar system based on multi-channel FMCW stations for local positioning applications. IEEE Trans. Microw. Theory Tech., 61 (1) (2013), 676684.
[8] Byoung-Oh, K.; Yang-Bae, J.; Sang-Bonh, K.: Motion control of two-wheeled welding mobile robot with seam tracking sensor, in IEEE Int. Symp. Ind. Electron., June 2001, 851–856.
[9] Suwanratchatamanee, K.; Saegusa, R.; Matsumoto, M.; Hashimoto, S.: A simple tactile sensor system for robot manipulator and object edge shape recognition, in IEEE Ind. Electron. Soc., November 2007, 245–250.
[10] Li, Y.; Li, Y.F.; Wang, Q.L.; Xu, D.; Tan, M.: Measurement and defect detection of the weld bead based on online vision inspection. IEEE Trans. Instrum. Meas., 59 (7) (2010), 18411849.
[11] Zhang, L.; Ye, Q.; Yang, W.; Jiao, J.: Weld line detection and tracking via spatial-temporal cascaded hidden markov models and cross structured light. IEEE Trans. Instrum. Meas., 63 (4) (2014), 742753.
[12] Chen, H.: Application of visual servoing to an X-ray based welding inspection robot, in International Conference on Control and Automation, Budapest, Hungary, June 2005, 977–982.
[13] Schuster, G.; Doctor, S.; Bond, L.: A system for high-resolution, nondestructive, ultrasonic imaging of weld grains. IEEE Trans. Instrum. Meas., 53 (6) (2004), 15261532.
[14] Matthes, K.J.; Kohler, T.: Miniradarsensorik in der Schweißtechnik – Grundlagen und Stand der Technik (Use of Radar Sensors in Welding Technology – Basics and State-of-the-Art). Schweißen undSchneiden, 52 (10) (2000), 604609.
[15] Kohler, T.: Ein Beitrag zum Einsatz von Mikrowellensensoren im industriellen Umfeld am Beispiel der Schweißtechnik (A Contribution of Microwavesensors in Industrial Applications, using the Example of Welding Technology). PhD dissertation, Technische Universität Chemnitz, Chemnitz, 2003.
[16] Kusch, M.; Wallig, M.; Bürkner, G.: Anwendungsmöglichkeit der Radarsensorik beim Metall- Schutzgasschweißen (Speculative Applications of Radar Sensors in Gas-Shielded Metal-Arc Welding). Schweißen und Schneiden, 60 (1) (2008), 2428.
[17] Nakamura, M.; Yamaguchi, Y.; Yamada, H.: Real-time and full polarimetric FM-CW radar and its application to the classification of targets. IEEE Trans. Instrum. Meas., 47 (2) (1998), 572577.
[18] Soumekh, M.: Synthetic Aperture Radar Signal Processing with MATLAB Algorithms, Wiley, New York, 1999.
[19] Cumming, I.G.; Wong, F.H.: Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, Boston, 2005.
[20] Schmid, C.M.; Fischer, A.; Feger, R.; Stelzer, A.: A 77-GHz FMCW radar transceiver MMIC/waveguide integration approach, in International Microwave Symposium (IMS 2013), June 2013, 1–4.
[21] Fischer, A.; Tong, Z.; Hamidipour, A.; Maurer, L.; Stelzer, A.: A 77-GHz antenna in package, in Microwave Conference (EuMC 2011), October 2011, 1316–1319.
[22] Stove, A.G.: Linear FMCW radar techniques. IEE Proc. F, Commun. Radar Signal Process., 139 (5) (1992), 343350.
[23] Michaeli, A.: Equivalent edge currents for arbitrary aspects of observation. IEEE Trans. Antennas Propag., 32 (3) (1984), 252258.
[24] Wiesbeck, W.; Kahny, D.: Single reference, three target calibration and error correction for monostatic, polarimetric free space measurements. Proc. IEEE, 79 (10) (1991), 15511558.
[25] Knott, E.: RCS reduction of dihedral corners. IEEE Trans. Antennas Propag., 25 (3) (1977), 406409.
[26] Tong, Z.; Stelzer, A.: A millimeter-wave transition from microstrip to waveguide using a differential microstrip antenna, in Microwave Conf. (EuMC), 2010 European, Paris, September 2010, 660–663.
[27] Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall PTR, Upper Saddle River, NJ, 1993.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed