Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T13:01:32.041Z Has data issue: false hasContentIssue false

Nonlinear modeling of InP devices for W-band applications

Published online by Cambridge University Press:  19 March 2009

Davide Resca*
Affiliation:
Department of Electronics Information and Systems, The University of Bologna, Viale C. Pepoli 3/2, 40123 Bologna, Italy, Emails: davide.resca3@unibo.it, alberto.santarelli@unibo.it, rafael.cignani@unibo.it, ffilicori@deis.unibo.it
Valeria Di Giacomo
Affiliation:
Department of Electronics, The University of Ferrara, Via Saragat 1, 44100 Ferrara, Italy, Emails: antonio.raffo@unife.it, valeria.digiacomo@unife.it, giorgio.vannini@unife.it
Antonio Raffo
Affiliation:
Department of Electronics, The University of Ferrara, Via Saragat 1, 44100 Ferrara, Italy, Emails: antonio.raffo@unife.it, valeria.digiacomo@unife.it, giorgio.vannini@unife.it
Rafael Cignani
Affiliation:
Department of Electronics Information and Systems, The University of Bologna, Viale C. Pepoli 3/2, 40123 Bologna, Italy, Emails: davide.resca3@unibo.it, alberto.santarelli@unibo.it, rafael.cignani@unibo.it, ffilicori@deis.unibo.it
Alberto Santarelli
Affiliation:
Department of Electronics Information and Systems, The University of Bologna, Viale C. Pepoli 3/2, 40123 Bologna, Italy, Emails: davide.resca3@unibo.it, alberto.santarelli@unibo.it, rafael.cignani@unibo.it, ffilicori@deis.unibo.it
Giorgio Vannini
Affiliation:
Department of Electronics, The University of Ferrara, Via Saragat 1, 44100 Ferrara, Italy, Emails: antonio.raffo@unife.it, valeria.digiacomo@unife.it, giorgio.vannini@unife.it
Fabio Filicori
Affiliation:
Department of Electronics Information and Systems, The University of Bologna, Viale C. Pepoli 3/2, 40123 Bologna, Italy, Emails: davide.resca3@unibo.it, alberto.santarelli@unibo.it, rafael.cignani@unibo.it, ffilicori@deis.unibo.it
Dominique Schreurs
Affiliation:
Katholieke Universiteit Leuven, The Electronic Engineering Department, B-3001 Leuven, Belgium, Email: dominique.schreurs@esat.kuleuven.be
Farid Medjdoub
Affiliation:
Department of Electron Devices and Circuits, The University of Ulm, Albert-Einstein-Allee 45, 89081 Ulm, Germany, Email: farid.medjdoub@uni-ulm.de
Nicolas Thouvenin
Affiliation:
The I.E.M.N/III V lab/TIGER, U.M.R.-C.N.R.S. 8520, U.S.T.L., Avenue Poincaré, B.P. 69, 59652 Villeneuve D'Ascq Cedex, France, Emails: christophe.gaquiere@iemn.univ-lille1.fr, nicolas.thouvenin@ed.univ-lille1.fr
Christophe Gaquière
Affiliation:
The I.E.M.N/III V lab/TIGER, U.M.R.-C.N.R.S. 8520, U.S.T.L., Avenue Poincaré, B.P. 69, 59652 Villeneuve D'Ascq Cedex, France, Emails: christophe.gaquiere@iemn.univ-lille1.fr, nicolas.thouvenin@ed.univ-lille1.fr
*
Corresponding author: D. Resca Email: davide.resca3@unibo.it

Abstract

A recently proposed technique for the distributed modeling of extrinsic parasitic effects in electron devices is used for the very first time in conjunction with a lumped equivalent circuit model for the intrinsic device.

Nonlinear modeling of 0.1 μm InP HEMTs for W-band applications is considered here, leading to extremely accurate predictions of harmonic distortion and power added efficiency at the fundamental frequencies of 27 and 94 GHz.

The distributed parasitic network is identified through accurate electromagnetic simulations up to the upper frequency limit of the millimeter-wave band (300 GHz), while standard pulsed I/V and S-parameter measurements up to 67 GHz are used for the identification of the intrinsic device model.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Weinreb, S.; Lai, R.; Erickson, N.; Gaier, T.; Wielgus, J.: W-band InP wideband MMIC LNA with 30 K noise temperature, in IEEE MTT Symp. Dig., Anaheim, CA, June 1999, 101104.Google Scholar
[2]Agarwal, B. et al. : 112-GHz, 157-GHz, and 180-GHz InP HEMT traveling-wave amplifiers. IEEE Trans. Microwave Theory Tech., 46 (1998), 25532559.CrossRefGoogle Scholar
[3]Chanh, N.; Micovic, M.: The state-of-the-art of GaAs and InP power devices and amplifiers. IEEE Trans. Electron Dev., 48 (2001), 472478.CrossRefGoogle Scholar
[4]Piotrowicz, S. et al. : Best combination between power density, efficiency, and gain at V-Band with an InP-based PHEMT structure. IEEE Microwave Guided Wave Lett., 8 (1998), 1012.CrossRefGoogle Scholar
[5]Medjdoub, F.; Zaknoune, M.; Wallart, X.; Gaquière, C.; Theron, D.: High performances of InP channel power HEMT at 94 GHz. Electron. Lett., 41 (2005), 14061408.CrossRefGoogle Scholar
[6]Alekseev, E.; Pavlidis, D.; Tsironis, C.: W-band on-wafer load-pull measurement system and its application to HEMT characterization, in IEEE MTT Symp. Dig., Baltimore, MD, June 1998, 14791482.Google Scholar
[7]Medjdoub, F.; Vandenbrouck, S.; Gaquière, C.; Delos, E.; Zaknoune, M.; Theron, D.: Power measurement setup for large signal microwave characterization at 94 GHz. IEEE Microwave Wireless Compon. Lett., 16 (2006), 218220.CrossRefGoogle Scholar
[8]Webster, R.T.; Slobodnik, A.J.; Roberts, G.A.: Determination of InP HEMT noise parameters and S-parameters to 60 GHz. IEEE Trans. Microwave Theory Tech., 43 (1995), 12161225.CrossRefGoogle Scholar
[9]Bengtsson, L.; Garcia, M.; Karisson, C.; Rorsman, N.; Zirath, H.; Angelov, I.: Characterization and large signal modeling of InP HEMT devices, in Europ. Microwave Conf., Bologna, Italy, October 1995, 11681172.CrossRefGoogle Scholar
[10]Orzati, A.; Schreurs, D.; Pergola, L.; Benedickter, H.; Homan, O.; Bachtold, W.: A 110 GHz look-up table based InP HEMTs large-signal model including impact ionization effects, in Int. Conf. Indium Phosphide and Related Materials, Nara, Japan, May 2001, WP-15.Google Scholar
[11]Murti, M.R. et al. : Temperature-dependent small-signal and noise parameter measurements and modeling on InP HEMTs. IEEE Trans. Microwave Theory Tech., 48 (2000), 25792587.CrossRefGoogle Scholar
[12]Chang, Y.H.; Chang, J.J.: Analysis of an EEHEMT model for InP pHEMTs, in IEEE Conf. Electron Devices and Solid-State Circuits, Tainan, Taiwan, December 2007, 237240.CrossRefGoogle Scholar
[13]Bandler, J.W.; Chen, S.H.; Daijavad, S.: Microwave device modeling using efficient L1 optimization: a novel approach. IEEE Trans. Microwave Theory Tech., 36 (1986), 12821293.CrossRefGoogle Scholar
[14]Lin, F.; Kompa, G.: FET model parameter extraction based on optimization with multiplane data-fitting and bidirectional search – a new concept. IEEE Trans. Microwave Theory Tech., 42 (1994), 11141121.Google Scholar
[15]Khalaf, Y.A.; Riad, S.M.: Novel technique for estimating metal semiconductor field effect transistor parasitics. Int J RF Microwave CAE, 13 (2002), 6273.CrossRefGoogle Scholar
[16]Dambrine, G.; Cappy, A.; Heliodore, F.; Playez, E.: A new method for determining the FET small-signal equivalent circuit. IEEE Trans. Microwave Theory Tech., 36 (1988), 11511159.CrossRefGoogle Scholar
[17]Berroth, M.; Bosch, R.: Broad-band determination of the FET small-signal equivalent circuit. IEEE Trans. Microwave Theory Tech., 38 (1990), 891895.CrossRefGoogle Scholar
[18]Costa, J.C.; Miller, M.; Golio, M.; Noms, G.: Fast, accurate, on-wafer extraction of parasitic resistances and inductances in GaAs MESFET's and HEMT's, in IEEE MTT-S Int. Microwave Symp. Dig., Albuquerque, NM, June 1992, 10111014.Google Scholar
[19]Tayrani, R.; Gerber, J.E.; Daniel, T.; Pengelly, R.S.; Rohde, U.L.: A new and reliable direct parasitic extraction method for MESFETs and HEMTs, in Europ. Microwave Conf., October 1993, 451453.CrossRefGoogle Scholar
[20]Cidronali, A.; Collodi, G.; Santarelli, A.; Vannini, G.; Manes, G.: Millimeter-wave FET modeling using on-wafer measurements and EM simulation. IEEE Trans. Microwave Theory Tech., 50 (2002), 425432.CrossRefGoogle Scholar
[21]Laloue, L. et al. : Extrapolation of a measurement-based millimeter-wave nonlinear model of pHEMT to arbitrary-shaped transistors through electromagnetic simulations. IEEE Trans. Microwave Theory Tech., 47 (1999), 908914.CrossRefGoogle Scholar
[22]Resca, D. et al. : Electron device modelling for millimeter-wave wideband wireless systems. TARGET Days 2007, Rome, December 2007, 712.Google Scholar
[23]Resca, D. et al. : Scalable nonlinear FET model based on a distributed parasitic network description. IEEE Trans. Microwave Theory Tech., 56 (2008), 755766.CrossRefGoogle Scholar
[24]Wood, J.; Root, D.E.: Bias-dependent linear scalable millimeter-wave FET model. IEEE Trans. Microwave Theory Tech., 48 (2000), 23522360.CrossRefGoogle Scholar
[25]Agilent Technologies, Inc., ADS 2008 Update 2: Momentum, Agilent Technologies, Inc., Santa Clara, CA, USA, August 2008.CrossRefGoogle Scholar
[26]Sonnet Software, Inc., Sonnet Suites 11: User's Guide, Sonnet Software, Inc., North Syracuse, NY, USA, March 2007.Google Scholar
[27]Rautio, J.C.: Synthesis of compact lumped models from electromagnetic analysis results. IEEE Trans. Microwave Theory Tech., 55 (2007), 25482554.CrossRefGoogle Scholar
[28]Resca, D.; Raffo, A.; Santarelli, A.; Vannini, G.; Filicori, F.: Scalable equivalent circuit FET model for MMIC design identified through FW-EM-analyses. IEEE Trans. Microwave Theory Tech., 57 (2009), 245253.CrossRefGoogle Scholar
[29]Golio, J.M.: Microwave MESFETs and HEMTs. Artech House: Boston, MA, 1991.Google Scholar