Skip to main content Accessibility help
×
Home

A new GaN-based high-speed and high-power switching circuit for envelope-tracking modulators

  • Patrick Augeau (a1), Philippe Bouysse (a1), Audrey Martin (a1), Jean Michel Nebus (a1), Raymond Quéré (a2), Luc Lapierre (a3), Olivier Jardel (a4) and Stéphane Piotrowicz (a4)...

Abstract

In this paper, we report a new high-speed and high-power switching circuit based on GaN HEMT's. The elementary switching cell, composed of two GaN HEMT's and two resistors, acts like a power threshold comparator with high-output voltage. Theoretical analysis of static and dynamic circuit operation points out the dependence of efficiency and switching speed to the main circuit elements. Four switching cells are then combined together thanks to SiC Schottky diodes to design a multi-level power switch that can be used as a power supply modulator for envelope tracking power amplifiers. The designed four-level supply modulator, based on Nitronex GaN HEMT's, exhibits more than 75% of efficiency for an envelope signal up to 4 MHz, a switching frequency of 20 MHz and output voltages in the range of 12–30 V.

Copyright

Corresponding author

Corresponding author: P. Bouysse Email: philippe.bouysse@unilim.fr

References

Hide All
[1]Kim, B. et al. : Push the envelope: design concepts for envelope-tracking power amplifiers. IEEE Microw. Mag., 14 (3) (2013), 6881, IMS special issue May.
[2]Kimball, D.F. et al. : High-efficiency envelope-tracking W-CDMA base-station amplifier using GaN HFETs. IEEE Trans. Microw. Theory Tech., 54 (11) (2006), 38483856.
[3]Forestier, S.; Bouysse, P.; Quere, R.; Mallet, A.; Nebus, J.-M.; Lapierre, L.: Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method. IEEE Trans. Microw. Theory Tech., 52 (4) (2004), 11321141.
[4]Hoyerby, M.C.W.; Andersen, M.A.E.: High-bandwidth, high-efficiency envelope tracking power supply for 40 W RF power amplifier using paralleled bandpass current sources, in IEEE 36th Power Electronics Specialists Conf., 2005 (PESC ’05), 2005, 28042809.
[5]Bacque, L. et al. : High-current–high-speed dynamic bias control system applied to a 100-W wideband push–pull amplifier. IEEE Trans. Microw. Theory Tech., 56 (12) (2008), 27982807.
[6]Aitto-oja, T.: High efficiency envelope tracking supply voltage modulator for high power base station amplifier applications, in 2010 IEEE MTT-S Int. Microwave Symp. Digest (MTT), 23–28 May 2010, 668–671.
[7]Yan, J.J.; Hsia, C.; Kimball, D.F.; Asbeck, P.M.: GaN envelope tracking power amplifier with more than one Octave Carrier Bandwidth, in 2011 IEEE Compound Semiconductor Integrated Circuit Symp. (CSICS), 16–19 October 2011, 14.
[8]Hsia, C.; Kimball, D.F.; Asbeck, P.M.: Effect of maximum power supply voltage on envelope tracking power amplifiers using GaN HEMTs, in 2011 IEEE Topical Conf. Power Amplifiers for Wireless and Radio Applications (PAWR’11), 16–19 January 2011, 69–72.
[9]Kim, J.; Son, J.; Jee, S.; Kim, S.; Kim, B.: Optimization of Envelope Tracking Power Amplifier for Base-Station Applications. IEEE Trans. Microw. Theory Tech., 61 (4) (2013), 16201627.
[10]Kanbe, A. et al. : New architecture for envelope-tracking power amplifier for base station, in IEEE Asia Pacific Conf. Circuits and Systems, 2008 (APCCAS 2008), November 30 2008–December 3 2008, 296–299.
[11]Bacqué, L.: Optimisation du rendement d'amplificateurs de puissance sous contrainte de linéarité en présence de modulations numériques complexes, PhD Thesis no. 2008LIMO441, University of Limoges, France, 2008.

Keywords

A new GaN-based high-speed and high-power switching circuit for envelope-tracking modulators

  • Patrick Augeau (a1), Philippe Bouysse (a1), Audrey Martin (a1), Jean Michel Nebus (a1), Raymond Quéré (a2), Luc Lapierre (a3), Olivier Jardel (a4) and Stéphane Piotrowicz (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed