Skip to main content Accessibility help

Monostatic continuous-wave radar integrating a tunable wideband leakage canceler for indoor tagless localization

  • Marco Mercuri (a1), Paweł Barmuta (a2) (a3), Ping Jack Soh (a2) (a4), Paul Leroux (a2) and Dominique Schreurs (a2)...


Continuous-wave (CW) radars have been recently investigated in healthcare aiming at contactless health monitoring. However, a major problem in monostatic CW architectures is represented by the unwanted leakage produced by poor isolation between transmitter and receiver, which can drastically decrease the receiver's sensitivity reducing therefore the radar dynamic range. Although this situation can be easily controlled in case of narrowband CW radar by an appropriate passive microwave design, it becomes much more complicated in case of stepped-frequency CW and frequency-modulated CW architectures that present an ultra-wideband nature. In this paper, a monostatic CW radar integrating a tunable wideband leakage canceler aiming at indoor tagless localization is presented and discussed. The use of the feedforward canceler allows a strong reduction of the unwanted leakage over the whole radar bandwidth. Experimental results demonstrate the feasibility of this approach, showing an outstanding improvement of the radar dynamic range.


Corresponding author

Corresponding author: M. Mercuri Email:


Hide All
[1] Holger, H.: Commercial applications of millimeter waves: history, present status, and future trends. IEEE Trans. Microw. Theory Tech., 43 (1995), 16391653.
[2] Hasch, J.; Topak, E.; Schnabel, R.; Zwick, T.; Weigel, R.; Waldschmidt, C.: Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans. Microw. Theory Tech., 60 (2012), 845860.
[3] Yanovsky, F.J.: Recent researches in the field of weather radar at the National Aviation University, in Proc. Int. Symp. on Microwaves, Radar and Remote Sensing, Kiev, Ukraine, 2008.
[4] Mostafanezhad, I.; Boric-Lubecke, O.; Lubecke, V.A.: Coherent low IF receiver architecture for Doppler radar motion detector used in life signs monitoring, in Proc. IEEE Radio and Wireless Symp. (RWS), New Orleans, LA, USA, 2010.
[5] Changzhi, L.; Lubecke, V.M.; Boric-Lubecke, O.; Jenshan, L.A.: Review on recent advances in Doppler radar sensors for noncontact healthcare monitoring. IEEE Trans. Microw. Theory Tech., 61 (2013), 20462060.
[6] Guochao, W.; Changzhan, G.; Inoue, T.; Changzhi, L.A.: Hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring. IEEE Trans. Microw. Theory Tech., 62 (2014), 28122822.
[7] Mercuri, M.; Schreurs, D.; Leroux, P.: SFCW microwave radar for in-door fall detection, in Proc. IEEE Topical Conf. Biomedical Wireless Technol., Santa Clara, CA, USA, 2012.
[8] Mercuri, M. et al. : Optimized SFCW radar sensor aiming at fall detection in a real room environment, in Proc. IEEE Topical Conf. Biomedical Wireless Technol., Austin, TX, USA, 2013.
[9] Mercuri, M.; Schreurs, D.; Leroux, P.: Optimised waveform design for radar sensor aimed at contactless health monitoring. Electron. Lett., 48 (2012), 12551257.
[10] Mercuri, M. et al. : Analysis of an indoor biomedical radar-based system for health monitoring. IEEE Trans. Microw. Theory Tech., 61 (2013), 20612068.
[11] Karsmakers, P.; Croonenborghs, T.; Mercuri, M.; Schreurs, D.; Leroux, P.: Automatic in-door fall detection based on microwave radar measurements, in Proc. Eur. Radar Conf., Amsterdam, The Netherlands, 2012.
[12] Songcheol, H.A.: Quadrature radar topology with Tx leakage canceller for 24-GHz radar applications. IEEE Trans. Microw. Theory Tech., 55 (2007), 14381444.
[13] Choul-Young, K.; Jeong-Geun, K.; Baek, D.; Songcheol, H.: A circularly polarized balanced radar front-end with a single antenna for 24-GHz radar applications. IEEE Trans. Microw. Theory Tech., 57 (2007), 293297.
[14] Han Lim, L.; Won-Gyu, L.; Oh, K.-S.; Jong-Won, Y.: 24 GHz balanced Doppler radar front-end with Tx leakage canceller for antenna impedance variation and mutual coupling. IEEE Trans. Antennas Propag., 59 (2011), 44974504.
[15] Jeong-Geun, K.; Sangsoo, K.; Sanghoon, J.; Jae-Woo, P.; Songcheol, H.: Balanced topology to cancel Tx leakage in CW radar. IEEE Microw. Compon. Lett., 14 (2004), 443445.
[16] Gonzalez, M.A.; Grajal, J.; Asensio, A.; Madueno, D.; Requejo, L.: A detailed study and implementation of an RPC for LFM-CW radar, in Proc. Eur. Radar Conf., Manchester, England, 2006.
[17] Kuo, H.-C.; Wang, H.-H.; Wang, P.-C.; Chuang, H.-R.; Lin, F.-L.: 60-GHz millimeter-wave life detection system with clutter canceller for remote human vital-signal sensing, in Proc. IEEE MTT-S Int. Microwave Workshop Series on Millimeter Wave Integration Technologies, Sitges, Spain, 2011.
[18] Hyoungsoo, K.; Sanghyun, W.; Sungyong, J.; Kil-Hoon, L.: A CMOS transmitter leakage canceller for WCDMA applications. IEEE Trans. Microw. Theory Tech., 61 (2007), 33733380.
[19] Jae-Young, J.; Chan-Won, P.; Kyung-Whan, Y.: A novel carrier leakage suppression front-end for UHF RFID reader. IEEE Trans. Microw. Theory Tech., 60 (2012), 14681477.
[20] Saavedra, C.E.; Zheng, Y.: Active quasi-circulator realisation with gain elements and slow-wave couplers. IET Microw. Antennas Propag., 1 (2007), 10201023.
[21] Mung, S.W.Y.; Wing Shing, C.: Novel active quasi-circulator with phase compensation technique. IEEE Microw. Compon. Lett., 18 (2008), 800802.
[22] Yang, J.-R., Kim, D.-W.; Hong, S.: Quasi-circulator for effective cancellation of transmitter leakage signals in monostatic six-port radar. Electron. Lett., 45 (2009), 10931095.
[23] Hsien-Shun, W.; Chao-Wei, W.; Tzuang, C.-K.C.: CMOS active quasi-circulator with dual transmission gains incorporating feedforward technique at K-band. IEEE Trans. Microw. Theory Tech., 58 (2012), 20842091.
[24] Ding-Jie, H.; Jing-Lin, K.; Huei, W.: A 24-GHz low power and high isolation active quasi-circulator, in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Montreal, QC, Canada, 2012.
[25] Shih-Chieh, S.; Jhih-Yu, H.; Kun-You, L.; Huei, W.: A 1.5–9.6 GHz monolithic active quasi-circulator in 0.18 µm CMOS technology. IEEE Microw. Compon. Lett., 18 (2008), 797799.
[26] Mastela, D.; Reindl, L.; Wiebking, L.; Kawalkiewicz, M.; Zander, T.: Angle tracking using FMCW radar based localization system (Industrial, environmental and medical applications), in Proc. Int. Conf. on Microwaves, Radar Wireless Communications MIKON, Krakow, Poland, 2006.
[27] Yokoo, K.; Beauregard, S.; Schneider, M.: Indoor relative localization with mobile short-range radar, in Proc. IEEE Vehicular Technologies Conf., Barcelona, Spain, 2009.
[28] Sorrentino, R.; Sbarra, E.; Urbani, L.; Montori, S.; Gatti, R.V.; Marcaccioli, L.: Accurate FMCW radar-based indoor localization system, in Proc. IEEE Int. Conf. RFID-Technologies and Applications (RFID-TA), Nice, France, 2012.
[29] Agethen, R. et al. : 60 GHz industrial radar systems in silicon-germanium technology, in Proc. IEEE MTT-S Int. Microw. Symp., Seattle, WA, USA, 2013.
[30] Sai, B.; Kastelein, B.: Advanced high precision radar gauge for industrial applications, in Proc. Int. Conf. Radar, Shanghai, China, 2006.
[31] Xianzhong, C.; Fengmei, L.; Qingwen, H.; Yifang, L.: Industrial high-temperature radar and imaging technology in blast furnace burden distribution monitoring process, in Proc. Int. Conf. Electronic Measurement Instruments, Beijing, China, 2009.
[32] Klein, T.; Faassen, M.; Kulke, R.; Rusch, C.: A 77 GHz radar frontend in LTCC for small range, high precision industrial applications, in Proc. Europ. Microw. Conf. (EuMC), Amsterdam, The Netherlands, 2012.
[33] Vinci, G. et al. : A six-port radar system for precise distance measurements and vibration monitoring in industrial environments, in Proc. Symp. Sensors and Measuring Systems, Nuremberg, Germany, 2014.
[34] Jones, D.R.: Direct Global Optimization Algorithm , Springer, US, 2001.
[35] Barmuta, P. et al. : Radar range improvement using gradient-free optimization for health care applications, in Proc. 17th International Radar Symposium, Krakow, Poland, 2016.
[36] Soh, P.J.; Mercuri, M.; Pandey, G.; Vandenbosch, G.A.E.; Schreurs, D.M.M.-P.: Dual-band planar bowtie monopole for a fall-detection radar and telemetry system. IEEE Antennas Wireless Propag. Lett., 11 (2012), 16981701.
[37] Mercuri, M.; Soh, P.J.; Schreurs, D.; Leroux, P.: A practical distance measurement improvement technique for a SFCW-based health monitoring radar, in Proc. of 81st ARFTG Microwave Meas. Conf., Seattle, WA, USA, 2013.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed