Skip to main content Accessibility help
×
Home

LTE-based passive multistatic radar for high-speed railway network surveillance: design and preliminary results

  • Rodrigo Blázquez-García (a1), Jorge Casamayón-Antón (a1) and Mateo Burgos-García (a1)

Abstract

With the aim of performing perimeter surveillance of high-speed railway networks, this paper presents the design of a passive multistatic radar system based on the use of Long-Term Evolution (LTE) downlink signals as the illumination of opportunity. Taking into account the specifications and standard of the LTE system, the ambiguity function of measured downlink signals is analyzed in terms of range and Doppler resolution, ambiguities, and sidelobe level. The deployment of the proposed passive radar is flexible and scalable, and it is based on multichannel software defined radio receivers that obtain the reference and surveillance signals by means of digital beamforming. The signal processing and data fusion are based, respectively, on the delay-Doppler cross-correlation with the reconstructed reference signals and a two-stage tracking at sensor and central level. Finally, the performance of the proposed system is estimated in terms of its maximum detection range and simulation results of the detection of moving targets are presented, demonstrating its technical feasibility for the short-range detection of pedestrians, vehicles, and small drones.

Copyright

Corresponding author

Author for correspondence: Mateo Burgos-García E-mail:mateo@gmr.ssr.upm.es

References

Hide All
1Henríquez BL, Pérez and Deakin, E (eds) (2017) High-Speed Rail and Sustainability: Decision-Making and the Political Economy of Investment. New York: Routledge.
2Indra Sistemas Perimeter protection: Fencing. [Online]. Available at: https://www.indracompany.com/en/perimeter-protection-fencing.
3Systems FLIR Uncompromising vision in the pursuit of security. [Online]. Available at: https://www.flir.com/applications/security/.
4Advanced Radar Technologies ART Drone Sentinel. [Online]. Available at: http://www.advancedradartechnologies.com/products/art-drone-sentinel/.
5Liu, A, Yang, Q, Zhang, X and Deng, W (2017) Collision avoidance radar system for the bullet train: implementation and first results. IEEE Aerospace and Electronics Systems Magazine 32, 417.
6Colone, F, Bongioanni, C and Lombardo, P (2013) Multifrequency integration in FM radio-based passive bistatic radar. Part II: direction of arrival estimation. IEEE Aerospace and Electronics Systems Magazine 28, 4047.
7Fang, G, Yi, J, Wan, X, Liu, Y and Ke, H (2018) Experimental research of multistatic passive radar with a single antenna for drone detection. IEEE Access 6, 3354233551.
8Chetty, K, Chen, Q and Woodbridge, K (2016) Train monitoring using GSM-R based passive radar, 2016 IEEE Radar Conference, Philadelphia, PA, USA.
9Blázquez-García, R, Casamayón-Antón, J and Burgos-García, M (2018) LTE-R based passive multistatic radar for high-speed railway network surveillance, 15th European Radar Conference, Madrid, Spain.
10He, R, Ai, B, Wang, G, Guan, K, Zhong, Z, Molisch, AF, Briso-Rodriguez, C and Oestges, CP (2016) High-speed railway communications: from GSM-R to LTE-R. IEEE Vehicular Technology Magazine 11, 4958.
11Solanki, PKS (2017) Implementation of high speed railway mobile communication system. International Journal on Recent and Innovation Trends in Computing and Communication 5, 4144.
12Zhou, T, Tao, C, Salous, S, Liu, L and Tan, Z (2016) Implementation of an LTE-based channel measurement method for high-speed railway scenarios. IEEE Transactions on Instrumentation and Measurement 65, 2536.
13Choi, HY, Song, Y and Kim, YK (2014) Standard of future railway wireless communication in Korea, 8th International Conference on Communications and Information Technology, Tenerife, Spain.
14European Telecommunications Standards Institute (ETSI) (2017) ETSI TS 136 211: LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (GPP TS 36.211 version 14.2.0 Release 14).
15Baker, CJ, Griffiths, HD and Papoutsis, I (2005) Passive coherent location radar systems. Part 2: waveform properties. IEE Proceedings-Radar Sonar And Navigation 152, 160168.
16Saini, R and Cherniakov, M (2005) DTV signal ambiguity function analysis for radar application. IEE Proceedings-Radar Sonar And Navigation 152, 133142.
17Griffiths, HD and Baker, CJ (2005) Passive coherent location radar system. Part 1: performance prediction. IEE Proceedings-Radar Sonar And Navigation 152, 153159.
18Colone, F, Falcone, P, Bongioanni, C and Lombardo, P (2012) WiFi-based passive bistatic radar: data processing schemes and experimental results. IEEE Transactions on Aerospace and Electronic Systems 48, 10611079.
19Lombardo, P and Colone, F (2013) Advanced processing methods for passive bistatic radar systems. In Melvin, WL and Scheer, JA (eds), Principles of Modern Radar: Advanced Techniques. Edison, NJ: SciTech Publishing, pp. 739821.
20Rohling, H (1983) Radar CFAR thresholding in clutter and multiple target situations. IEEE Transactions on Aerospace and Electronic Systems 19, 608621.
21León-Infante, F, González-Partida, J, Blázquez-García, R and Burgos-García, M (2014) Processing chain of a radar network for safety improvement in the usage of heavy machinery, 12th European Radar Conference, Paris, France.
22Malanowski, M, Kulpa, K and Suchozebrski, R (2009) Two-stage tracking algorithm for passive radar, 12th International Conference on Information Fusion, Seattle, WA, USA.
23Flöster, F and Rohling, H (2005) Data association and tracking for automotive radar networks. IEEE Transactions on Intelligent Transportation Systems 6, 370377.
24Pisa, S, Piuzzi, E, Pittella, E, Lombardo, P, Genovese, A, Bloisi, D, Nardi, D, d'Atanasio, P and Zambotti, A (2018) Numerical and experimental evaluation of the radar cross section of a drone, 15th European Radar Conference, Madrid, Spain.
25Malanowski, M, Kulpa, K, Kulpa, J, Samczynski, P and Misiurewicz, J (2014) Analysis of detection range of FM-based passive radar. IET Radar, Sonar and Navigation 8, 153159.

Keywords

LTE-based passive multistatic radar for high-speed railway network surveillance: design and preliminary results

  • Rodrigo Blázquez-García (a1), Jorge Casamayón-Antón (a1) and Mateo Burgos-García (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed