Skip to main content Accessibility help
×
Home

Gain enhancement of microstrip patch antenna using Sierpinski fractal-shaped EBG

  • Neeraj Rao (a1) and Dinesh Kumar Vishwakarma (a1)

Abstract

This is the first report on novel mushroom-type electromagnetic band gap (EBG) structures, consisting of fractal periodic elements, used for enhancing the gain of microstrip patch antennas. Using CST Microwave studio the performance of rectangular patch antenna has been examined on proposed fractal EBG substrates. It is found that fractal EBGs are more effective in suppressing surface wave thus resulting in higher gain. The gain of rectangular patch has been improved from 6.88 to 10.67 dBi. The proposed fractal EBG will open new avenues for the design and development of variety of high-frequency components and devices with enhanced performance.

Copyright

Corresponding author

Corresponding author: N. Rao, Email: neerajr@iiitdmj.ac.in

References

Hide All
[1] Waterhouse, R. (ed.): Microstrip Patch Antennas: a Designer's Guide: a Designer's Guide, Springer, Dordrecht, Netherlands, 2003.
[2] Whittow, W.G. et al. : Applications and future prospects for microstrip antennas using heterogeneous and complex 3-D geometry substrates. Prog. Electromagn. Res., 144 (2014), 271280.
[3] Chen, Z.N.; Chia, M.Y.: Broadband probe-fed plate antenna, in 30th European Int. Microwave Conf., 2000, 1–5.
[4] Cella, T., Orten, P.; Hjelmstad, J.: MIMO geometry and antenna design for high capacity and improved coverage in mm-wave systems. Int. J. Antennas Propag., 2013 (2013), 19.
[5] Sievenpiper, D. et al. : High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech., 47 (11) (1999), 20592074.
[6] Boutayeb, H.; Denidni, T.A.: Gain enhancement of a microstrip patch antenna using a cylindrical electromagnetic crystal substrate. IEEE Trans. Antennas Propag., 55 (11) (2007), 31403145.
[7] Llombart, N. et al. : Planar circularly symmetric EBG structures for reducing surface waves in printed antennas. IEEE Trans. Antennas Propag., 53 (10) (2005), 32103218.
[8] Yoon, J.H. et al. : Reflect array with EBG elements for improved radiation characteristics. Electron. Lett., 49 (16) (2013), 975976.
[9] Kildal, P.; Alfonso, E.; Chen, H.: 2 × 2-slot element for 60 GHz planar array antenna realized on two doubled-sided PCBs using SIW cavity and EBG-type soft surface fed by microstrip-ridge gap waveguide. IEEE Trans. Antennas Propag., 62 (9) (2014), 45644573.
[10] Yeap, S.B.; Chen, Z.N.: Microstrip patch antennas with enhanced gain by partial substrate removal. IEEE Trans. Antennas Propag., 58 (9) (2010), 28112816.
[11] Yeap, S.B.; Chen, Z.N.; Qing, X.: Gain-enhanced 60-GHz LTCC antenna array with open air cavities. IEEE Trans. Antennas Propag., 59 (9) (2011), 34703473.
[12] Chen, Z.N. et al. : Design and measurement of substrate-integrated planar millimeter wave antenna arrays at 60–325 GHz. Radio and Wireless Symp. (RWS), IEEE, 2014, 25–27.
[13] Rao, N.; Vishwakarma, D.K.: Gain and bandwidth enhancement of a microstrip antenna using partial substrate removal in multiple-layer dielectric substrate, in PIER Proc., Suzhou, China, 2011, 1285–1289.
[14] Rao, N.; Vishwakarma, D.K.: Investigation of a microstrip patch antenna with EBG structures using FDTD method, in Recent Advances in Intelligent Computational Systems (RAICS), IEEE, 2011, 332–337.
[15] Liang, J.; Yang, H.-Y.D.: Radiation characteristics of a microstrip patch over an electromagnetic bandgap surface. IEEE Trans. Antennas Propag., 55 (6) (2007), 16911697.
[16] Ruaro, A.; Thaysen, J.; Jakobsen, K.B.: Simultaneous out-of-band interference rejection and radiation enhancement in an electronic product via an EBG structure, in Microwave Symp. (IMS), 2014 IEEE MTT-S Int. IEEE, 2014, 1–3.
[17] Soh, P.J. et al. : Wearable dual-band Sierpinski fractal PIFA using conductive fabric. Electron. Lett., 47 (6) (2011), 365367.
[18] Ullah, M.H.; Islam, M.T.: A compact square loop patch antenna on high dielectric ceramic–PTFE composite material. Appl. Phys. A, 113 (1) (2013), 185193.
[19] Quarfoth, R.; Sievenpiper, D.: Artificial tensor impedance surface waveguides. IEEE Trans. Antennas Propag., 61 (7) (2013), 35973606.

Keywords

Gain enhancement of microstrip patch antenna using Sierpinski fractal-shaped EBG

  • Neeraj Rao (a1) and Dinesh Kumar Vishwakarma (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed