Skip to main content Accessibility help

Factors reducing the cut-off frequency of resonant tunneling diodes

  • Nikolay Alkeev (a1), Stanislav Averin (a1), Aleksey Dorofeev (a2) and Nadezda Gladysheva (a2)


The impedance dependence of resonant tunneling diodes (RTDs) based on the GaAs/AlAs heterosystem is investigated in the range of 0.1–40 GHz. The analysis shows that the impedance of about 90% of unbiased RTDs is well described by an equivalent circuit (EC) consisting of parallel-connected resistance and capacitance and an additional resistance connected in series with this parallel combination. When a bias voltage is applied to these RTDs, one needs a “quantum” inductance LQ to describe the impedance behavior. We find the value of LQ and calculate the delay time of electrons in the quantum well (QW) of an RTD. The impedance of the rest 10% of the RTDs is well described by an EC that takes into account the recharge of localized electron states at the heterointerfaces of the active layers. Expressions for the cut-off frequencies that take into account the delay of electrons in the QW and the localized electron states at the heterointerfaces are derived. It is shown that the delay of electrons in the QW and localized electron states at the heterointerfaces may significantly reduce the cut-off frequency of RTDs.


Corresponding author

Corresponding author: Nikolay Alkeev Email:


Hide All
[1]Scott, J.S.; Kaminski, J.P.; Allen, S.J.; Chow, D.; Lui, M.; Liu, T.Y.: Terahertz response of an InGaAs/AlAs resonant tunneling diode. Semicond. Sci. Technol., 9 (1994), 530532.
[2]Suzuki, S.; Asada, M.; Teranishi, A.; Sugiyama, H.; Yokoyama, H.: Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature. Appl. Phys. Lett., 97 (2010), 242102-1242102-3.
[3]Smith, P.M.; Conn, D.R.: The limits of resonant tunneling diode subharmonic mixer performance. J. Appl. Phys., 66 (1989), 14541458.
[4]Rozanov, B.A.; Rozanov, S.B.: Priemniki Millimetrovykh Voln (Millimeter Wave Receivers), Radio i Svyaz’, Moscow, 1989.
[5]Alkeev, N.V.; Averin, S.V.; Dorofeev, A.A.; Gladysheva, N.B.; Torgashin, M.Yu.: GaAs/AlAs resonant-tunneling diode for subharmonic mixers Russian microelectronics, 53 (2010), 331339.
[6]Sze, S.M.; Ng Kwok, K.: Physics of Semiconductor Devices. Wiley-Interscience, New Jersey, 2007.
[7]Brown, E.R.; Parker, C.D.; Solner, T.C.L.G.: Effect of quasibond-state lifetime on the oscillation power of resonant tunneling diodes. Appl. Phys. Lett., 54 (1989), 934936.
[8]Gusyatiner, M.S.; Gorbachev, A.I.: Poluprovodnikovye Sverkhvysokochastotnye Diody (Microwave Semiconductor Diodes). Radio i Svyaz’, Moscow, 1983.
[9]Feiginov, M.N.: Displacement current and the real part of high-frequency conductance of resonant-tunneling diode. Appl. Phys. Lett., 78 (2001), 33013303.
[10]Sheard, F.W.; Toombs, G.: Space-charge effects and ac response of resonant tunneling double-barrier diodes. Solid-State Electron., 32 (1989), 14431447.
[11]Wei, T.; Stapleton, S.; Berolo, O.: Capacitance and hysteresis study of AlAs/GaAs resonant tunneling diode with asymmetric spacer layers. J. Appl. Phys., 77 (1995), 40714076.
[12]Mattia, J.P.; McWhorter, A.L.; Aggarwal, R.J.; Rana, F.; Brown, E.R.; Maki, P.: Comparison of a rate-equation model with experiment for the resonant tunneling diode in the scattering dominated regime. J. Appl. Phys., 84 (1998), 11401148.
[13]Luryi, S.: Frequency limit of double-barrier resonant-tunneling oscillators. Appl. Phys. Lett., 47 (1985), 490492.
[14]Tsuchiya, M.; Matsusue, T.; Sakaki, H.: Tunneling escape rate of electrons from quantum well in double-barrier heterostructures. Phys. Rev. Lett., 59 (1987), 23562359.
[15]Jackson, M.K.; Johnson, M.B.; Chow, D.H.; McGill, T.C.; Nieh, C.W.: Electron tunneling time measured by photoluminescence excitation correlation spectroscopy. Appl. Phys. Lett., 54 (1989), 552554.
[16]Eaves, L. et al. : Electrical and spectroscopic studies of space-charge buildup, energy relaxation and magnetically enhanced bistability in resonant-tunneling structures. Solid-State Electron., 32 (1989), 11011108.
[17]Feiginov, M.N.; Chowdhury, D.R.: Operation of resonant-tunneling diodes beyond resonant-state-lifetime limit applied. Phys. Lett., 91 (2007), 203501-1203501-3.
[18]Tager, A.S.: Razmernye kvantovye effekty v polyprovodnikovyh strukturah i perspektiva ih primeneniya v electronike SVCh. Ch. 1. Fizicheskie osnovy. Elektronnaya Tekhnika. Ser. 1. Elektronika. SVCh, No. 9 (1987), 2134.
[19]Alkeev, N.V.; Lyubchenko, V.E.; Velling, P.; Khorenko, E.; Prost, W.; Tegude, F.J.: Equivalent circuit of a resonant tunnel InGaAs/InAlAs diode operating at millimetric waves. J. Commun. Technol. Electron., 49 (2004), 833838.
[20]Blank, T.V.; Goldberg, Yu.A.: Mechanisms of current flow in metal–semiconductor ohmic contacts. Semiconductors, 41 (2007), 12631292.
[21]Krishnamurthy, S.A.; Sher, A.; Chen, A.B.: Materials choice for ballistic transport: Group velocities and mean free paths calculated from realistic band structures. Appl. Phys. Lett., 52 (1988), 468470.
[22]Brown, E.R.; Goodhue, W.D.; Sollner, T.C.L.G.: Fundamental oscillations up to 200 GHz in resonant tunneling diodes and new estimates of their maximum oscillation frequency from stationary-state tunneling theory. J. Appl. Phys., 64 (1988), 15191529.
[23]Alkeev, N.V. et al. : Sequential mechanism of electron transport in the resonant tunneling diode with thick barriers. Semiconductors, 41 (2007), 227231.
[24]Jo, J.; Li, H.S.; Chen, Y.W.; Wang, K.L.: Observation of a large capacitive current in a double barrier resonant tunneling diode at resonance. Appl. Phys. Lett., 64 (1994), 22762278.


Factors reducing the cut-off frequency of resonant tunneling diodes

  • Nikolay Alkeev (a1), Stanislav Averin (a1), Aleksey Dorofeev (a2) and Nadezda Gladysheva (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed