Skip to main content Accessibility help
×
Home

Directivity improvement and optimal far field pattern of time modulated concentric circular antenna array using hybrid evolutionary algorithms

  • Gopi Ram (a1), Durbadal Mandal (a1), Rajib Kar (a1) and Sakti Prasad Ghoshal (a2)

Abstract

In this paper time modulated nine-ring concentric circular antenna array (TMCCAA) using fitness based novel hybrid adaptive differential evolution with particle swarm optimization (ADEPSO) has been studied. ADEPSO is hybrid of fitness based adaptive differential evolution and particle swarm optimization (PSO). Differential evolution is a simple and robust evolutionary algorithm but sometimes causes instability problem; PSO is also a simple, population based robust evolutionary algorithm but has the problem of sub-optimality. ADEPSO has overcome the above individual disadvantages faced by both the algorithms and is used for the design of TMCCAA. The comparative case studies as Case-1 and Case-2 are made with three control parameters like uniform inter-element spacing in rings, inter-ring radii and the switching “ON” times of rings. The same array radiates at various harmonic frequencies. The first two harmonic frequencies have been considered in this work. The numerical results show Case-2, outperforms Case-1 with respect to better side lobe level (SLL), and more improved directivity. Apart from this, the authors have computed powers radiated at the center/fundamental frequency and the first two sideband frequencies, and dynamic efficiency. It is found that power radiated by any sideband frequency is very less as compared with the power radiated at the center frequency. It has been observed that as the sideband frequency increases, side band level decreases to the greater extent as compared with SLL. The aperture size is a very important constraint for the array, since there is an upper limit for the aperture size of a given array in real-life environment. Hence, in our optimization design, the maximum radius of the concentric ring array is constrained.

Copyright

Corresponding author

Corresponding author: G. Ram Email: gopi203hardel@gmail.com

References

Hide All
[1] Ballanis, A.: Antenna Theory Analysis and Design, 2nd ed., John Willey and Son's Inc., New York, 1997.
[2] Elliott, R.S.: Antenna Theory and Design, Revised ed., John Wiley, New Jersey, 2003.
[3] Shanks, H.E.; Bickmore, R.W.: Four-dimensional electromagnetic radiators. Canad. J. Phys., 37 (1959), 263275.
[4] Kummer, W.H., Villeneuve, A.T., Fong, T.S., Terrio, F.: Ultra-low sidelobes from time-modulated arrays. IEEE Trans. Antennas Propag., 11 (5) (1963), 633639.
[5] Lewis, B.L., Evins, J.B.: A new technique for reducing radar response to signals entering antenna sidelobes. IEEE Trans. Antennas Propag., 31 (6) (1983), 993996.
[6] Yang, S., Gan, Y.B.; Qing, A.: ‘Sideband suppression in time modulated linear arrays by the differential evolution algorithm. IEEE Antennas Wireless Propag. Lett., 1 (2002), 173175.
[7] Yang, S., Gan, Y.B.; Tan, P.K.: ‘A new technique for power-pattern synthesis in time-modulated linear arrays. IEEE Antennas Wireless Propag. Lett., 2 (2003), 285287.
[8] Fondevila, J., Bregains, J.C., Ares, F.; Moreno, E.: Optimizing uniformly excited arrays through time modulation. IEEE Antennas Wireless Propag. Lett., 3 (2004), 298301.
[9] Yang, S., Gan, Y.B., Qing, A.; Tan, P.K.: Design of a uniform amplitude time modulated linear array with optimized time sequences. IEEE Trans. Antennas Propag., 53 (7) (2005), 23372339.
[10] Yang, S., Gan, Y.B.; Qing, A.: Antenna array pattern nulling using a differential evolution algorithm. Int. J. RF Microw. Comput.-Aided Eng., 14 (2004), 5763.
[11] Zhu, Q.; Yang, S.; Zheng, L.; Nie, Z.: Design of a low sidelobe time modulated linear array with uniform amplitude and sub-sectional optimized time steps. IEEE Trans. Antennas Propag., 60 (9) (2012), 44364439.
[12] Yang, S.; Gan, Y.B.; Tan, P.K.: Evaluation of directivity and gain for time-modulated linear antenna arrays. Microw. Opt. Technol. Lett., 42 (2) (2004), 167171.
[13] Das, R.: Concentric ring array. IEEE Trans. Antennas Propag., 14 (3) (1966), 398400.
[14] Stearns, C.; Stewart, A.: An investigation of concentric ring antennas with low sidelobes. IEEE Trans. Antennas Propag., 13 (6) (1965), 856863.
[15] Goto, N.; Cheng, D.K.: On the synthesis of concentric-ring arrays. IEEE Proc., 58 (5) (1970), 839840.
[16] Huebner, M.D.A.: Design and optimization of small concentric ring arrays, in ProG. IEEE AP-S Symp., 1978, 455–445.
[17] Holtrup, M.G.; Margulnaud, A.; Citerns, J.: Synthesis of electronically steerable antenna arrays with element on concentric rings with reduced sidelobes, in Proc. IEEE AP-S Symp., 2001, 800803.
[18] Dessouky, M., Sharshar, H.; Albagory, Y.: Efficient sidelobe reduction technique for small-sized concentric circular arrays. Prog. Electromagn. Res., PIER 65 (2006), 187200.
[19] Haupt, R.L.: Optimized element spacing for low sidelobe concentric ring arrays. IEEE Trans. Antennas Propag., 56 (1) (2008), 266268.
[20] Munson, D.C.; O'Brian, J.D.; Jenkins, W.K.: A tomographic formulation of spot-light mode synthetic aperture radar. Proc. IEEE, 71 (1983), 917925.
[21] Compton, R.T.: An adaptive array in a spread-spectrum communication system. Proc. IEEE, 66 (1978), 289298.
[22] Haykin, S., Justice, J.H., Owsley, N.L., Yen, J.L., Kak, A.C.: Array Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, 1985.
[23] Panduro, M.A.; Mendez, A.L.; Dominguez, R.; Romero, G.: Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms. Int. J. Electron. Commun. (AEO), 60 (2006), 713717.
[24] Panduro, M.A., Brizuela, C.A.; Balderas, L.I.; Acosta, D.A.: A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays. Prog. Electromagn. Res. B, 13 (2009), 171186.
[25] Kennedy, J.; Eberhart, R.C.: Particle swarm optimization, in IEEE Int. Conf. on Neural Networks, Piscataway, NJ, 1995, vol. 4, 19421948.
[26] Shihab, M., Najjar, Y., Dib, N.; Khodier, M.: Design of non-uniform circular antenna arrays using particle swarm optimization. J. Electr. Eng., 59 (4) (2008), 216220.
[27] Mandal, D., Ghoshal, S.P.; Bhattacharjee, A.K.: Design of concentric circular antenna array with central element feeding using particle swarm optimization with constriction factor and inertia weight approach and evolutionary programing technique. J. Infrared Millim. Terahertz Waves, 31 (6) (2010), 667680.
[28] Mandal, D., Ghoshal, S.P.; Bhattacharjee, A.K.: Radiation pattern optimization for concentric circular antenna array with central element feeding using craziness based particle swarm optimization. Int. J. RF Microw. Comput.-Aided Eng., 20 (5) (2010), 577586.
[29] Zheng, L., Yang, S., Zhu, Q.; Nie, Z.: Synthesis of pencil-beam patterns with time-modulated concentric circular ring antenna arrays, in PIERS Proc., Suzhou, China, September 2011, 372376.
[30] Storn, R.; Price, K.: Differential Evolution- a Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces, Technical Report, Int. Computer Science Institute, Berkley, 1995.
[31] Reddy, K.S.; Bharath, M.S.; Sahoo, S.K., Sinha, S., Reddy, J.P.: Design of low power, high performance FIR filter using modified differential evolution algorithm, in Int. Symp. on Electronic System Design, (ISED), 2011, 6266.
[32] Chattopadhyay, S., Sanyal, S.K.; Chandra, A.: A novel self-adaptive differential evolution algorithm for efficient design of multiplier-less low pass FIR filter, in Int. Conf. on Sustainable Energy and Intelligent Systems (SEISCON), 2011, 733738.
[33] Zhang, W., Xie, X.: DEPSO: Hybrid particle swarm with differential evolution operator. IEEE Int. Conf. Syst., Man and Cybernetics, 4 (2003), 38163821.
[34] Hao, Z.F.; Guo, G.H.; Huang, H.: A particle swarm optimization algorithm with differential evolution. Int. Conf. Machine Learning and Cybernetics, 2 (2007), 10311035.
[35] Ghoshal, A., Giri, R., Chowdhury, A., Das, S.; Abraham, A.: Two-channel quadrature mirror bank filter design using a fitness-adaptive differential evolution algorithm, in 2010 Second World Congress on Nature and Biologically Inspired Computing, 2010, 634641.
[36] Vasundhara, D.M.; Kar, R.; Ghoshal, S.P.: Digital FIR filter design using fitness based hybrid adaptive differential evolution with particle swarm optimization. Nat. Comput., 13 (1) (2014), 5564.
[37] Walpole, R.E.; Myer, R.H.: Probability and Statistics for Engineers and Scientists, Macmillan, New York, 1978.

Keywords

Directivity improvement and optimal far field pattern of time modulated concentric circular antenna array using hybrid evolutionary algorithms

  • Gopi Ram (a1), Durbadal Mandal (a1), Rajib Kar (a1) and Sakti Prasad Ghoshal (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed